A103972 Expansion of (1-sqrt(1-4*x-20*x^2))/(2*x).
1, 6, 12, 60, 264, 1392, 7392, 41424, 236640, 1384512, 8224896, 49554816, 301884672, 1856878080, 11514915840, 71915838720, 451938731520, 2855705994240, 18132621772800, 115637702461440, 740356410961920, 4756888756101120, 30662391191715840, 198229520200704000, 1285001080928845824
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
n:=30:a(0):=1:a(1):=6 :for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-4*x-20*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
PARI
x='x+O('x^66); Vec((1-sqrt(1-4*x-20*x^2))/(2*x)) \\ Joerg Arndt, May 13 2013
Formula
G.f.: (1-sqrt(1-4*x*(1+5*x)))/(2*x).
a(n) = Sum_{k=0..n} 5^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n)=2*(2n-1)*a(n-1)+20*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(12+2*sqrt(6))*(2+2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Comments