cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103973 Expansion of (sqrt(1-8*x^2)+8*x^2+2*x-1)/(2*x*sqrt(1-8*x^2)).

Original entry on oeis.org

1, 2, 4, 4, 24, 16, 160, 80, 1120, 448, 8064, 2688, 59136, 16896, 439296, 109824, 3294720, 732160, 24893440, 4978688, 189190144, 34398208, 1444724736, 240787456, 11076222976, 1704034304, 85201715200, 12171673600, 657270374400
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Crossrefs

Formula

G.f.: 1/sqrt(1-8*x^2)+(1-sqrt(1-8*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 2^(n-k) * A000108(k) * C(k+1, n-k)}.
Conjecture D-finite with recurrence: 11*n*(n+1)*a(n)+4*n*(4*n+1)*a(n-1) +8*(27-11*n^2)*a(n-2) -32*(4*n+9)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 09 2012
a(n) ~ 2^((3*n + 1)/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^((3*n + 2)/2) / (sqrt(Pi)*n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021