A103999 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.
1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 6, 34, 198, 1154, 6726, 39202, ... 1, 16, 196, 2704, 37636, 524176, 7300804, ... 1, 54, 1666, 64152, 2549186, 101757654, 4064620168, ... 1, 196, 16384, 1844164, 220581904, 26743369156, 3252222705664, ... 1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
Links
- Cliff, Danny and Zoe Stoll, About Klein bottles
- W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
Crossrefs
Programs
-
Mathematica
T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round; Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
-
PARI
default(realprecision, 120); {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021
Formula
T(M, N) = Product_{m=1..M} Product_{n=1..N} ( 4sin(Pi*(4n-1)/(4N))^2 + 4sin(Pi*(2m-1)/(2M))^2 ).