cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103999 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2M x 2N Klein bottle.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 16, 34, 1, 1, 54, 196, 198, 1, 1, 196, 1666, 2704, 1154, 1, 1, 726, 16384, 64152, 37636, 6726, 1, 1, 2704, 171394, 1844164, 2549186, 524176, 39202, 1, 1, 10086, 1844164, 57523158, 220581904, 101757654, 7300804, 228486, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,           1,             1,                1, ...
  1,   6,    34,      198,        1154,          6726,            39202, ...
  1,  16,   196,     2704,       37636,        524176,          7300804, ...
  1,  54,  1666,    64152,     2549186,     101757654,       4064620168, ...
  1, 196, 16384,  1844164,   220581904,   26743369156,    3252222705664, ...
  1, 726,171394, 57523158, 21050622914, 7902001927776, 2988827208115522, ...
		

Crossrefs

Rows include A003499, A067902+2. Columns include A003500+2.
Main diagonal gives A340557.

Programs

  • Mathematica
    T[m_, n_] := Product[4 Sin[(4k-1) Pi/(4n)]^2 + 4 Cos[j Pi/(2m+1)]^2, {j, 1, m}, {k, 1, n}] // Round;
    Table[T[m-n, n], {m, 0, 9}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 20 2018 *)
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin((4*a-1)*Pi/(4*n))^2+4*sin((2*b-1)*Pi/(2*k))^2)))} \\ Seiichi Manyama, Jan 11 2021

Formula

T(M, N) = Product_{m=1..M} Product_{n=1..N} ( 4sin(Pi*(4n-1)/(4N))^2 + 4sin(Pi*(2m-1)/(2M))^2 ).