cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104001 Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns starting with fixed m, 2

Original entry on oeis.org

2, 4, 6, 8, 18, 24, 16, 54, 96, 120, 32, 162, 384, 600, 720, 64, 486, 1536, 3000, 4320, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800
Offset: 3

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Triangle begins as:
    2;
    4,    6;
    8,   18,   24;
   16,   54,   96,   120;
   32,  162,  384,   600,   720;
   64,  486, 1536,  3000,  4320,  5040;
  128, 1458, 6144, 15000, 25920, 35280, 40320;
		

Crossrefs

Programs

  • Magma
    [Factorial(k-1)*(k-1)^(n-k): k in [3..n], n in [3..15]]; // G. C. Greubel, Nov 29 2022
    
  • Mathematica
    Table[(k-1)!*(k-1)^(n-k), {n,3,15}, {k,3,n}]//Flatten (* G. C. Greubel, Nov 29 2022 *)
  • SageMath
    def A104001(n,k): return factorial(k-1)*(k-1)^(n-k)
    flatten([[A104001(n,k) for k in range(3,n+1)] for n in range(3,16)]) # G. C. Greubel, Nov 29 2022

Formula

T(n, k) = (k-2)! * (k-1)^(n+1-k).
From G. C. Greubel, Nov 29 2022: (Start)
T(n, 3) = A000079(n-2).
T(n, 4) = 6*A000244(n-4).
T(n, 5) = 4!*A000302(n-5).
T(2*n-3, n) = A152684(n-1). (End)