cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104017 Devaraj numbers (A104016) which are not Carmichael numbers.

Original entry on oeis.org

11305, 39865, 96985, 401401, 464185, 786961, 1106785, 1296505, 1719601, 1993537, 2242513, 2615977, 2649361, 2722681, 3165961, 3181465, 3755521, 4168801, 4229601, 4483297, 4698001, 5034601, 5381265, 5910121, 5977153, 7177105
Offset: 1

Views

Author

Max Alekseyev, Feb 25 2005

Keywords

Comments

Counterexamples to Devaraj's 2nd conjecture: A.K. Devaraj conjectured that these numbers are exactly Carmichael numbers. It was proved (see A104016 ) that every Carmichael number is indeed a Devaraj number, but the converse is not true. Devaraj numbers that are not Carmichael are listed here.
It is sufficient to scan only odd numbers (cf. A104016), which makes the computation of the list twice as fast. - M. F. Hasler, Apr 03 2009

Crossrefs

Programs

  • PARI
    DNC() = for(n=2,10^8, f=factorint(n); if(vecmax(f[,2])>1,next); f=f[,1]; r=length(f); if(r==1,next); Carmichael=1; d=f[1]-1; p=1; for(i=1,r, d=gcd(d,f[i]-1); p*=f[i]-1; if((n-1)%(f[i]-1),Carmichael=0)); if( ((n-1)^(r-2)*d^2)%p==0 && !Carmichael, print1(" ",n)) )
    
  • PARI
    forstep( n=3, 10^7, 2, vecmax((f=factor(n))[,2])>1 && next; #(f*=[1,-1]~)>1 || next; gcd(f)^2*(n-1)^(#f-2) % prod(i=1,#f,f[i]) && next; for( i=1,#f, (n-1)%f[i] && !print1(n",") && break)) \\ M. F. Hasler, Apr 03 2009
    
  • PARI
    Korselt(n,p)=for(i=1, #p, if((n-1)%(p[i]-1), return(0))); 1
    Devaraj(n,p)=my(u=apply(q->q-1,p)); gcd(u)^2*(n-1)^(#p-2)%vecprod(u)==0
    list(lim)=my(v=List()); forsquarefree(N=11305,lim\=1, my(p=N[2][,1],n=N[1]); if(p[1]>2 && #p>2 && Devaraj(n,p) && !Korselt(n,p), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Mar 09 2023