cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A104031 Column 1 of triangle A104030, which is the matrix inverse of the triangle of pairwise sums of trinomial coefficients.

Original entry on oeis.org

1, -5, 32, -299, 4015, -74080, 1801537, -55855829, 2150565968, -100668835739, 5630336915071, -370807060847872, 28403381397111649, -2503741873703550533, 251652633457563092096, -28608467296650576313259, 3652291148549164761101551, -520296573821474451201241696
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Column 0 of triangle A104030 forms signed Hammersley's polynomial p_n(1) (A006846), offset 1.

Crossrefs

Cf. A104030.

Programs

  • PARI
    {a(n)=if(n<0,0,((matrix(n+2,n+2,m,j,if(m>=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+2,2])}

A104032 Unsigned row sums of triangle A104030, which is the matrix inverse of the triangle of pairwise sums of trinomial coefficients.

Original entry on oeis.org

1, 3, 13, 83, 781, 10515, 194125, 4721363, 146385805, 5636169363, 263831355085, 14755901813843, 971805538480141, 74439152531508243, 6561768848473177933, 659527417026466047443, 74976638559342869785741
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Row sums of triangle A104030 forms negative Genocchi numbers (of first kind)(A001469).

Crossrefs

Cf. A104030.

Programs

  • PARI
    {a(n)=if(n<0,0,(sum(k=0,n,abs((matrix(n+2,n+2,m,j,if(m>=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])))}

A006846 Hammersley's polynomial p_n(1).

Original entry on oeis.org

1, 1, 2, 7, 41, 376, 5033, 92821, 2257166, 69981919, 2694447797, 126128146156, 7054258103921, 464584757637001, 35586641825705882, 3136942184333040727, 315295985573234822561, 35843594275585750890976, 4575961401477587844760793, 651880406652100451820206941
Offset: 0

Views

Author

Keywords

Comments

Equals column 0 of triangle A104027. Also equals column 0 of triangle A104030 (offset 1). Both A104027 and A104030 involve the trinomial coefficients. - Paul D. Hanna, Mar 06 2005

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    function A006846list(len::Int)  # Algorithm of L. Seidel (1877)
        R = Array{BigInt}(len)
        A = fill(BigInt(0), len+1); A[1] = 1
        for n in 1:len
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2:1:n A[k] += A[k-1] end
            R[n] = A[n]
        end
        return R
    end
    println(A006846list(20)) # Peter Luschny, Jan 02 2018
  • Maple
    A006846 := proc(n)
        option remember ;
        if n =0 then
            return 1;
        else
            add(binomial(2*n,2*m)*procname(m)/(-4)^(n-m),m=0..n-1) ;
            (3/4)^n-% ;
        end if
    end proc:
    seq(A006846(n),n=0..20) ; # R. J. Mathar, Jan 10 2018
  • Mathematica
    h[n_, x_] := Sum[c[k] x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; a[n_] := Sum[(-1)^(n+k)*c[k], {k, 0, n}] /. eq[n] // First; Table[a[n], {n, 0, 15}]   (* Jean-François Alcover, Oct 02 2013, after Philippe Deléham *)
  • PARI
    {a(n)=local(X=x+x*O(x^(2*n))); round((2*n)!*polcoeff(cosh(sqrt(3)*X/2)/cos(X/2),2*n))} \\ Paul D. Hanna
    

Formula

a(n) = Sum_{k>=0} (-1)^(n+k)*A065547(n, k) = Sum_{k>=0} A085707(n, k). - Philippe Deléham, Feb 26 2004
E.g.f.: cosh(sqrt(3)*x/2)/cos(x/2) = Sum_{n>=0} a(n)*x^(2n)/(2n)!. - Paul D. Hanna, Feb 27 2005
a(n) = (-1)^n*A104027(n, 0). a(n+1) = (-1)^(n+1)*A104030(n, 0). - Paul D. Hanna, Mar 06 2005
G.f.: 1/(1-x/(1-x/(1-3x/(1-4x/(1-7x/(1-.../(1-ceiling((n+1)^2/4)*x/(1-... (continued fraction). - Paul Barry, Feb 24 2010
a(n) ~ 4*cosh(sqrt(3)*Pi/2) * (2*n)! / Pi^(2*n+1). - Vaclav Kotesovec, Jun 07 2021

A104029 Triangle, read by rows, of pairwise sums of trinomial coefficients (A027907).

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 13, 9, 1, 5, 26, 35, 14, 1, 6, 45, 96, 75, 20, 1, 7, 71, 216, 267, 140, 27, 1, 8, 105, 427, 750, 623, 238, 35, 1, 9, 148, 770, 1800, 2123, 1288, 378, 44, 1, 10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1, 11, 265, 2067, 7590, 15115, 17303, 11505
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Matrix inverse is A104030. Antidiagonal sums form unsigned A078039.

Examples

			Row 3: {4,13,9,1} is formed from the pairwise sums
of row 3 of A027907: {1,3, 6,7, 6,3, 1}.
Rows begin:
1;
2, 1;
3, 5, 1;
4, 13, 9, 1;
5, 26, 35, 14, 1;
6, 45, 96, 75, 20, 1;
7, 71, 216, 267, 140, 27, 1;
8, 105, 427, 750, 623, 238, 35, 1;
9, 148, 770, 1800, 2123, 1288, 378, 44, 1;
10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1;
11, 265, 2067, 7590, 15115, 17303, 11505, 4302, 825, 65, 1;
12, 341, 3157, 13959, 34210, 49721, 43923, 23397, 7194, 1155, 77, 1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff((1+x+x^2)^n+x*O(x^(2*k)),2*k)+ polcoeff((1+x+x^2)^n+x*O(x^(2*k+1)),2*k+1)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-2*x*(1+y)+x^2*(1+y+y^2)) +x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: A(x, y) = (1-x*y)/(1 - 2*x*(1+y) + x^2*(1+y+y^2) ).
T(n, k) = [x^(2k)](1+x+x^2)^n + [x^(2k+1)](1+x+x^2)^n.
Showing 1-4 of 4 results.