cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243429 Primes of the form 2^n + 39.

Original entry on oeis.org

41, 43, 47, 71, 103, 167, 1063, 2087, 8231, 131111, 536870951, 8589934631, 549755813927, 8796093022247, 154742504910672534362390567, 40564819207303340847894502572071, 162259276829213363391578010288167, 2722258935367507707706996859454145691687
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Comments

Associated n: 1, 2, 3, 5, 6, 7, 10, 11, 13, 17, 29, 33, 39, 43, 87, 105, 107, 131, 253, 329, ....

Crossrefs

Cf. primes of the form 2^n+k: A092506 (k=1), A057733 (k=3), A123250 (k=5), A104066 (k=7), A104070 (k=9), A156940 (k=11), A104067 (k=13), A144487 (k=15), A156973 (k=17), A104068 (k=19), A156983 (k=21), A176922 (k=23), A104072 (k=25), A104071 (k=27), A156974 (k=29), A104069 (k=31), A176926 (k=33), A176927 (k=35), A176924 (k=37), this sequence (k=39), A176925 (k=41), A243430 (k=43), A243431 (k=45), A243432 (k=47), A104073 (k=49).

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 2^n+39];
  • Mathematica
    Select[Table[2^n + 39, {n, 0, 500}], PrimeQ]

A253774 Numbers k such that 4^k + 19 is prime.

Original entry on oeis.org

1, 3, 15, 81, 327, 357, 685, 831, 861, 1405, 38571, 78127, 216487, 546121, 622615
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2015

Keywords

Examples

			15 is a term because 4^15 + 19 = 1073741843 is prime.
		

Crossrefs

Cf. A057221, A104068, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+19)];
    
  • Mathematica
    Select[Range[3000], PrimeQ[4^# + 19] &]
  • PARI
    is(n)=ispseudoprime(4^n+19) \\ Charles R Greathouse IV, Jun 06 2017

Formula

a(n) = A057221(n)/2. - Joerg Arndt, Aug 28 2015

Extensions

Three more term (using A057221) from Joerg Arndt, Aug 28 2015
a(14)-a(15) derived from A057221 by Elmo R. Oliveira, Nov 28 2023
Showing 1-2 of 2 results.