A104076 If k(m) is the m-th divisor (when the divisors are ordered by size) of n, then a(n) = gcd(k(1)+k(2), k(2)+k(3), k(3)+k(4), ..., k(j-1)+k(j)), where j is the number of divisors of n.
3, 4, 3, 6, 1, 8, 3, 4, 1, 12, 1, 14, 3, 4, 3, 18, 1, 20, 3, 2, 1, 24, 1, 6, 3, 4, 1, 30, 1, 32, 3, 2, 1, 6, 1, 38, 3, 4, 1, 42, 1, 44, 3, 2, 1, 48, 1, 8, 1, 4, 1, 54, 1, 2, 1, 2, 1, 60, 1, 62, 3, 2, 3, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 2, 1, 80, 1, 4, 1, 84, 1, 2, 3, 4, 1, 90, 1, 4, 3, 2, 1, 6, 1, 98
Offset: 2
Keywords
Examples
The divisors of 14 are 1,2,7,14. So a(14) = gcd(1+2, 2+7, 7+14) = 3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
Crossrefs
Cf. A143771.
Programs
-
Maple
A104076 := proc(n) local dvs ; dvs := sort(convert(numtheory[divisors](n),list)) ; igcd(seq( op(i,dvs)+op(i+1,dvs), i=1..nops(dvs)-1)) ; end: for n from 2 to 140 do printf("%d,",A104076(n)) ; od: # R. J. Mathar, Sep 05 2008
-
Mathematica
Table[GCD@@(Total/@Partition[Divisors[n],2,1]),{n,2,100}] (* Harvey P. Dale, Dec 18 2018 *)
Extensions
Extended by R. J. Mathar, Sep 05 2008
Definition corrected by Leroy Quet, Sep 21 2008