cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104076 If k(m) is the m-th divisor (when the divisors are ordered by size) of n, then a(n) = gcd(k(1)+k(2), k(2)+k(3), k(3)+k(4), ..., k(j-1)+k(j)), where j is the number of divisors of n.

Original entry on oeis.org

3, 4, 3, 6, 1, 8, 3, 4, 1, 12, 1, 14, 3, 4, 3, 18, 1, 20, 3, 2, 1, 24, 1, 6, 3, 4, 1, 30, 1, 32, 3, 2, 1, 6, 1, 38, 3, 4, 1, 42, 1, 44, 3, 2, 1, 48, 1, 8, 1, 4, 1, 54, 1, 2, 1, 2, 1, 60, 1, 62, 3, 2, 3, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 2, 1, 80, 1, 4, 1, 84, 1, 2, 3, 4, 1, 90, 1, 4, 3, 2, 1, 6, 1, 98
Offset: 2

Views

Author

Leroy Quet, Aug 31 2008

Keywords

Examples

			The divisors of 14 are 1,2,7,14. So a(14) = gcd(1+2, 2+7, 7+14) = 3.
		

Crossrefs

Cf. A143771.

Programs

  • Maple
    A104076 := proc(n) local dvs ; dvs := sort(convert(numtheory[divisors](n),list)) ; igcd(seq( op(i,dvs)+op(i+1,dvs), i=1..nops(dvs)-1)) ; end: for n from 2 to 140 do printf("%d,",A104076(n)) ; od: # R. J. Mathar, Sep 05 2008
  • Mathematica
    Table[GCD@@(Total/@Partition[Divisors[n],2,1]),{n,2,100}] (* Harvey P. Dale, Dec 18 2018 *)

Extensions

Extended by R. J. Mathar, Sep 05 2008
Definition corrected by Leroy Quet, Sep 21 2008