cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145446 a(n) = the smallest cube > n-th prime.

Original entry on oeis.org

8, 8, 8, 8, 27, 27, 27, 27, 27, 64, 64, 64, 64, 64, 64, 64, 64, 64, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 125, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 343, 343, 343, 343, 343, 343, 343, 343, 343, 343
Offset: 1

Views

Author

Zak Seidov, Oct 10 2008

Keywords

Comments

a(n) = A104147(n)^3

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[Prime[n]^(1/3)]^3,{n,100}]

A145447 a(n) = the smallest square (and/or cube) > n-th prime.

Original entry on oeis.org

4, 4, 8, 8, 16, 16, 25, 25, 25, 36, 36, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 144, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 256, 256, 256, 256, 256, 256, 289, 289, 289, 289
Offset: 1

Views

Author

Zak Seidov, Oct 10 2008

Keywords

Comments

a(n) = min(A145445(n), A145446(n) )= min ([A104103(n)]^2, [A104147(n)]^3)

Crossrefs

Programs

  • Mathematica
    Table[Min[{Ceiling[Prime[n]^(1/3)]^3,Ceiling[Prime[n]^(1/2)]^2}],{n,100}]

A145449 Numbers n such that A145445(n) = A145446(n).

Original entry on oeis.org

16, 17, 18, 123, 124, 125, 126, 127, 128, 129, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812, 1813, 1814, 1815, 1816, 1817, 1818
Offset: 1

Views

Author

Zak Seidov, Oct 10 2008

Keywords

Comments

Numbers n such that s(n), the smallest square > n-th prime, equals q(n), the smallest cube > n-th prime, s(n) = A145445(n), q(n) = A145446(n).

Crossrefs

Programs

  • Mathematica
    Do[If[Ceiling[Prime[n]^(1/3)]^3 == Ceiling[Prime[n]^(1/2)]^2,Print[n]],{n,10000}]
Showing 1-3 of 3 results.