A104245 Suppose n=(p1^e1)(p2^e2)... where p1,p2,... are the prime numbers and e1,e2,... are nonnegative integers. Then we can define Pn(x) = e1 + (e2)*x + (e3)*(x^2) + (e4)*(x^3) + ... + (ek)*(x^(k-1)) + ... The sequence is the table T(x,n)=Pn(x) read by antidiagonals.
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 4, 2, 0, 1, 5, 2, 9, 3, 1, 0, 1, 6, 2, 16, 4, 8, 3, 0, 1, 7, 2, 25, 5, 27, 3, 2, 0, 1, 8, 2, 36, 6, 64, 3, 4, 2, 0, 1, 9, 2, 49, 7, 125, 3, 6, 5, 1, 0, 1, 10, 2, 64, 8, 216, 3, 8, 10, 16, 3, 0, 1, 11, 2, 81, 9, 343, 3, 10, 17, 81, 4, 1, 0, 1, 12, 2
Offset: 1
Examples
a(13)=3 because 3=(p1^0)(p2^1)(p3^0)..., so P3(x)=x. Hence a(13) = T(3,3) = P3(3) = 3. The top left corner of the array: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ...
Programs
Extensions
Starting offset changed from 0 to 1 by Antti Karttunen, Jul 29 2015
Comments