A104305 Largest possible difference between consecutive marks that can occur amongst all possible perfect rulers of length n.
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 7, 9, 9, 10, 10, 9, 9, 12, 12, 12, 13, 11, 12, 14, 15, 15, 16, 14, 15, 7, 18, 18, 19, 17, 18, 16, 7, 21, 22, 22, 21, 20, 21, 20, 25, 25, 25, 26, 25, 24, 25, 24, 28, 29, 29, 30, 29, 28, 29, 28, 11, 11, 33, 34, 33, 33, 34, 32, 31, 9, 10, 11
Offset: 1
Keywords
Examples
There are 6 perfect rulers of length 13: [0,1,2,6,10,13], [0,1,4,5,11,13], [0,1,6,9,11,13] and their mirror images. The maximum difference between adjacent marks occurs for the second ruler between marks "5" and "11". Therefore a(13)=6.
Links
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, Table of n, a(n) for n = 1..208 [a(212), a(213) commented out by _Georg Fischer_, Mar 25 2022]
- Peter Luschny, Perfect and Optimal Rulers. A short introduction.
- Hugo Pfoertner, Largest and smallest maximum differences of consecutive marks of perfect rulers.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, MRLA search results and source code, Nov 6 2020.
- F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, Large Minimum Redundancy Linear Arrays: Systematic Search of Perfect and Optimal Rulers Exploiting Parallel Processing, IEEE Open Journal of Antennas and Propagation, 2 (2021), 79-85.
- Index entries for sequences related to perfect rulers.
Crossrefs
Cf. A104306 corresponding occurrence counts.
Comments