A104390 2-Smith numbers.
32, 42, 60, 70, 104, 152, 231, 315, 316, 322, 330, 342, 361, 406, 430, 450, 540, 602, 610, 612, 632, 703, 722, 812, 1016, 1027, 1029, 1108, 1162, 1190, 1246, 1261, 1304, 1314, 1316, 1351, 1406, 1470, 1510, 1603, 2013, 2054, 2065, 2070, 2071, 2106, 2114
Offset: 1
Examples
32 is a 2-Smith number because the sum of the digits of its prime factors, i.e., Sp (32) = Sp(2*2*2*2*2)= 2 + 2 + 2 + 2 + 2 = 10, which is equal to twice the digit sum of 32, i.e., 2*S(32) = 2*(3 + 2) = 10.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
- Shyam Sunder Gupta, Smith Numbers.
- Shyam Sunder Gupta, Smith Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
- Wayne L. McDaniel, The Existence of infinitely Many k-Smith numbers, Fibonacci Quarterly, Vol. 25, No. 1 (1987), pp. 76-80.
Programs
-
Mathematica
d[n_]:=IntegerDigits[n]; tr[n_]:=Transpose[FactorInteger[n]]; Select[Range[2120],2Total[d[#]]==Total[d@tr[#][[1]]*tr[#][[2]],2]&] (* Jayanta Basu, Jun 04 2013 *)