A104407 Number of Hamiltonian groups of order <= n.
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1
References
- Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
- John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Boris Horvat, Gašper Jaklič, and Tomaž Pisanski, On the number of hamiltonian groups, Mathematical Communications, Vol. 10, No. 1 (2005), pp. 89-94; arXiv preprint, arXiv:math/0503183 [math.CO], 2005.
- Tomaž Pisanski and Thomas W. Tucker, The genus of low rank hamiltonian groups, Discrete Math. 78 (1989), 157-167.
- Eric Weisstein's World of Mathematics, Hamiltonian Group.
Crossrefs
Programs
-
Mathematica
orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]];
Formula
a(n) ~ c * n, where c = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Oct 03 2023