cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104452 Number of groups of order <= n all of whose subgroups are normal.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 18, 19, 20, 21, 27, 28, 30, 31, 33, 34, 35, 36, 40, 42, 43, 46, 48, 49, 50, 51, 59, 60, 61, 62, 66, 67, 68, 69, 73, 74, 75, 76, 78, 80, 81, 82, 88, 90, 92, 93, 95, 96, 99, 100, 104, 105, 106, 107, 109, 110, 111, 113, 125, 126, 127
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0; numberOfAbelianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[a, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfHamiltonianGroupsOfOrderLEQThanN[n_]:=Map[Apply[Plus, # ]&, Table[Take[Map[h, Table[i, {i, 1, n}]], i], {i, 1, n}]]; numberOfAllGroupsOfOrderLEQThanN[n_]:=numberOfAbelianGroupsOfOrderLEQThanN[n] +numberOfHamiltonianGroupsOfOrderLEQThanN[n];

Formula

a(n) ~ c * n, where c = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Oct 03 2023

A104453 Smallest order for which there are n nonisomorphic finite Hamiltonian groups, or 0 if no such order exists.

Original entry on oeis.org

8, 72, 216, 1800, 648, 5400, 1944, 88200, 27000, 16200, 10, 5832, 264600, 0, 48600, 17496, 10672200, 0, 1323000, 0, 793800, 20, 243000, 52488, 0, 32016600, 405000, 0, 9261000, 2381400, 0, 157464
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • J. C. Lennox and S. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Formula

S_h(n) denotes the smallest number k for which exactly n nonisomorphic hamiltonian groups of order k exist. Here 0 indicates the case when n is not a product of partition numbers and S_h(n) does not exist.
Showing 1-2 of 2 results.