A104485 Primes p = p(k) such that prime(k) + 2 and prime(k+1) + 2 are both semiprimes.
19, 31, 47, 83, 109, 113, 127, 199, 251, 257, 293, 353, 401, 443, 467, 479, 487, 491, 499, 503, 557, 571, 577, 647, 677, 743, 761, 787, 829, 863, 911, 937, 941, 947, 971, 977, 983, 1109, 1187, 1193, 1291, 1327, 1361, 1381, 1399, 1459, 1499, 1553, 1559
Offset: 1
Examples
19 is a term because prime(8) + 2 = 19 + 2 = 21 = 3*7 and prime(9) + 2 = 25 = 5*5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A063637.
Programs
-
Mathematica
fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; Prime /@ Select[ Range[ 270], fQ[ Prime[ # ] + 2] && fQ[ Prime[ # + 1] + 2] &] (* Robert G. Wilson v, Apr 19 2005 *) Select[Prime[Range[250]],PrimeOmega[#+2]==PrimeOmega[NextPrime[#]+2]==2&] (* Harvey P. Dale, Apr 01 2024 *)
Extensions
Corrected and extended by Robert G. Wilson v, Apr 19 2005