cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099602 Triangle, read by rows, such that row n equals the inverse binomial transform of column n of the triangle of trinomial coefficients (A027907), omitting leading zeros.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 1, 5, 8, 5, 1, 3, 13, 22, 18, 7, 1, 1, 9, 26, 35, 24, 8, 1, 4, 26, 70, 101, 84, 40, 10, 1, 1, 14, 61, 131, 160, 116, 49, 11, 1, 5, 45, 171, 363, 476, 400, 215, 71, 13, 1, 1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1, 6, 71, 356, 1017, 1856, 2282, 1932
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2004

Keywords

Comments

Row sums form A099603, where A099603(n) = Fibonacci(n+1)*2^floor((n+1)/2). Central coefficients of even-indexed rows form A082759, where A082759(n) = Sum_{k=0..n} binomial(n,k)*trinomial(n,k). Antidiagonal sums form A099604.
Matrix inverse equals triangle A104495, which is generated from self-convolutions of the Catalan sequence (A000108).

Examples

			Rows begin:
  1;
  1,  1;
  1,  2,   1;
  2,  5,   4,   1;
  1,  5,   8,   5,   1;
  3, 13,  22,  18,   7,   1;
  1,  9,  26,  35,  24,   8,   1;
  4, 26,  70, 101,  84,  40,  10,   1;
  1, 14,  61, 131, 160, 116,  49,  11,  1;
  5, 45, 171, 363, 476, 400, 215,  71, 13,  1;
  1, 20, 120, 363, 654, 752, 565, 275, 83, 14, 1;
  ...
The binomial transform of row 2 = column 2 of A027907: BINOMIAL[1,2,1] = [1,3,6,10,15,21,28,36,45,55,...].
The binomial transform of row 3 = column 3 of A027907: BINOMIAL[2,5,4,1] = [2,7,16,30,50,77,112,156,210,...].
The binomial transform of row 4 = column 4 of A027907: BINOMIAL[1,5,8,5,1] = [1,6,19,45,90,161,266,414,615,...].
The binomial transform of row 5 = column 5 of A027907: BINOMIAL[3,13,22,18,7,1] = [3,16,51,126,266,504,882,1452,...].
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff((1+(y+1)*x-(y+1)*x^2)/(1-(y+1)*(y+2)*x^2+(y+1)^2*x^4)+x*O(x^n),n,x)+y*O(y^k),k,y)}
    
  • PARI
    {T(n,k)=(matrix(n+1,n+1,i,j,if(i>=j,polcoeff(polcoeff( (1+x*y/(1+x))/(1+x-y^2*(1-(1+4*x+O(x^i))^(1/2))^2/4+O(y^j)),i-1,x),j-1,y)))^-1)[n+1,k+1]}

Formula

G.f.: (1 + (y+1)*x - (y+1)*x^2)/(1 - (y+1)*(y+2)*x^2 + (y+1)^2*x^4).

A104496 Expansion of 2*(2*x+1)/((x+1)*(sqrt(4*x+1)+1)).

Original entry on oeis.org

1, 0, 0, -1, 5, -19, 67, -232, 804, -2806, 9878, -35072, 125512, -452388, 1641028, -5986993, 21954973, -80884423, 299233543, -1111219333, 4140813373, -15478839553, 58028869153, -218123355523, 821908275547, -3104046382351, 11747506651599, -44546351423299, 169227201341651
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Previous name was: Row sums of triangle A104495. A104495 equals the matrix inverse of triangle A099602, where row n of A099602 equals the inverse Binomial transform of column n of the triangle of trinomial coefficients (A027907).
Absolute row sums of triangle A104495 forms A014137 (partial sums of Catalan numbers).

Crossrefs

Programs

  • Maple
    gf := (2*(2*x+1))/((x+1)*(sqrt(4*x+1)+1)): ser := series(gf,x,30):
    seq(coeff(ser,x,n),n=0..28); # Peter Luschny, Apr 25 2016
  • Mathematica
    CoefficientList[Series[(1+2*x)/(1+x)/(1+x - (1-(1+4*x)^(1/2))^2/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff( (1+2*X)/(1+X)/(1+X-(1-(1+4*X)^(1/2))^2/4),n,x)}
    
  • Python
    from itertools import accumulate
    def A104496_list(size):
        if size < 1: return []
        L, accu = [1], [1]
        for n in range(size-1):
            accu = list(accumulate(accu + [-accu[0]]))
            L.append(-(-1)**n*accu[-1])
        return L
    print(A104496_list(29)) # Peter Luschny, Apr 25 2016

Formula

G.f.: A(x) = (1 + 2*x)/(1+x)/(1+x - x^2*Catalan(-x)^2), where Catalan(x)=(1-(1-4*x)^(1/2))/(2*x) (cf. A000108).
a(n) ~ (-1)^n * 2^(2*n+1) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
D-finite with recurrence: (n+1)*a(n) +(7*n-3)*a(n-1) +2*(7*n-12)*a(n-2) +4*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jan 23 2020

Extensions

New name using the g.f. of the author by Peter Luschny, Apr 25 2016
Showing 1-2 of 2 results.