A104496 Expansion of 2*(2*x+1)/((x+1)*(sqrt(4*x+1)+1)).
1, 0, 0, -1, 5, -19, 67, -232, 804, -2806, 9878, -35072, 125512, -452388, 1641028, -5986993, 21954973, -80884423, 299233543, -1111219333, 4140813373, -15478839553, 58028869153, -218123355523, 821908275547, -3104046382351, 11747506651599, -44546351423299, 169227201341651
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
gf := (2*(2*x+1))/((x+1)*(sqrt(4*x+1)+1)): ser := series(gf,x,30): seq(coeff(ser,x,n),n=0..28); # Peter Luschny, Apr 25 2016
-
Mathematica
CoefficientList[Series[(1+2*x)/(1+x)/(1+x - (1-(1+4*x)^(1/2))^2/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)
-
PARI
{a(n)=local(X=x+x*O(x^n));polcoeff( (1+2*X)/(1+X)/(1+X-(1-(1+4*X)^(1/2))^2/4),n,x)}
-
Python
from itertools import accumulate def A104496_list(size): if size < 1: return [] L, accu = [1], [1] for n in range(size-1): accu = list(accumulate(accu + [-accu[0]])) L.append(-(-1)**n*accu[-1]) return L print(A104496_list(29)) # Peter Luschny, Apr 25 2016
Formula
G.f.: A(x) = (1 + 2*x)/(1+x)/(1+x - x^2*Catalan(-x)^2), where Catalan(x)=(1-(1-4*x)^(1/2))/(2*x) (cf. A000108).
a(n) ~ (-1)^n * 2^(2*n+1) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
D-finite with recurrence: (n+1)*a(n) +(7*n-3)*a(n-1) +2*(7*n-12)*a(n-2) +4*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jan 23 2020
Extensions
New name using the g.f. of the author by Peter Luschny, Apr 25 2016
Comments