cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104496 Expansion of 2*(2*x+1)/((x+1)*(sqrt(4*x+1)+1)).

Original entry on oeis.org

1, 0, 0, -1, 5, -19, 67, -232, 804, -2806, 9878, -35072, 125512, -452388, 1641028, -5986993, 21954973, -80884423, 299233543, -1111219333, 4140813373, -15478839553, 58028869153, -218123355523, 821908275547, -3104046382351, 11747506651599, -44546351423299, 169227201341651
Offset: 0

Views

Author

Paul D. Hanna, Mar 11 2005

Keywords

Comments

Previous name was: Row sums of triangle A104495. A104495 equals the matrix inverse of triangle A099602, where row n of A099602 equals the inverse Binomial transform of column n of the triangle of trinomial coefficients (A027907).
Absolute row sums of triangle A104495 forms A014137 (partial sums of Catalan numbers).

Crossrefs

Programs

  • Maple
    gf := (2*(2*x+1))/((x+1)*(sqrt(4*x+1)+1)): ser := series(gf,x,30):
    seq(coeff(ser,x,n),n=0..28); # Peter Luschny, Apr 25 2016
  • Mathematica
    CoefficientList[Series[(1+2*x)/(1+x)/(1+x - (1-(1+4*x)^(1/2))^2/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff( (1+2*X)/(1+X)/(1+X-(1-(1+4*X)^(1/2))^2/4),n,x)}
    
  • Python
    from itertools import accumulate
    def A104496_list(size):
        if size < 1: return []
        L, accu = [1], [1]
        for n in range(size-1):
            accu = list(accumulate(accu + [-accu[0]]))
            L.append(-(-1)**n*accu[-1])
        return L
    print(A104496_list(29)) # Peter Luschny, Apr 25 2016

Formula

G.f.: A(x) = (1 + 2*x)/(1+x)/(1+x - x^2*Catalan(-x)^2), where Catalan(x)=(1-(1-4*x)^(1/2))/(2*x) (cf. A000108).
a(n) ~ (-1)^n * 2^(2*n+1) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014
D-finite with recurrence: (n+1)*a(n) +(7*n-3)*a(n-1) +2*(7*n-12)*a(n-2) +4*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jan 23 2020

Extensions

New name using the g.f. of the author by Peter Luschny, Apr 25 2016