A104515 Difference between the maximum number of consecutive integers and the least number >1 of consecutive integers, the sum of which equals 2n.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 4, 0, 0, 0, 3, 0, 4, 0, 0, 2, 0, 0, 4, 0, 5, 5, 0, 0, 4, 0, 0, 4, 0, 0, 7, 0, 0, 0, 5, 1, 4, 0, 0, 6, 8, 0, 4, 0, 0, 5, 0, 0, 7, 0, 8, 8, 0, 0, 4, 3, 0, 6, 0, 0, 8, 0, 9, 9, 0, 0, 7, 0, 0, 5, 8, 0, 4, 0, 0, 9, 11, 0, 4, 0, 8, 0, 0, 3, 9, 3, 0, 9, 0, 0
Offset: 1
Keywords
Examples
a(18) = 1 because 3+4+5+6 = 5+6+7 = 18.
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 67.
Programs
-
Mathematica
f[n_] := Block[{r = Ceiling[n/2]}, If[ IntegerQ[ Log[2, n]], 0, m = Range[r]; lst = Flatten[ Table[ m[[k]], {i, r}, {j, i + 1, r}, {k, i, j}], 1]; l = Length /@ lst[[ Flatten[ Position[ Plus @@@ lst, n]]]]; Max[l] - Min[l]]]; Table[ f[2n], {n, 105}]
Comments