A104516 a(n) is the first occurrence of k in A104515, the difference between the maximum number of consecutive integers and the minimum number >1 of consecutive integers, the sum of which equals n.
1, 9, 30, 15, 21, 35, 54, 45, 55, 77, 156, 91, 105, 135, 204, 153, 171, 209, 252, 231, 253, 299, 450, 325, 351, 405, 522, 435, 465, 527, 594, 561, 595, 665, 888, 703, 741, 819, 984, 861, 903, 989
Offset: 0
Keywords
Examples
a(2)=30 because 4+5+6+7+8 = 9+10+11 = 30.
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 67.
Programs
-
Mathematica
f[n_] := Block[{r = Ceiling[n/2]}, If[ IntegerQ[ Log[2, n]], 0, m = Range[r]; lst = Flatten[ Table[ m[[k]], {i, r}, {j, i + 1, r}, {k, i, j}], 1]; l = Length /@ lst[[ Flatten[ Position[ Plus @@@ lst, n]]]]; Max[l] - Min[l]]]; t = Table[0, {50}]; Do[ c = f[n]; If[ t[[c + 1]] == 0, t[[c + 1]] = n; Print[{n, c}]], {n, 10^4}]; t
Comments