A104528 Numerator of Sum_{k=1..n} 1/tau(k), where tau(k) is the number of divisors function.
1, 3, 2, 7, 17, 37, 43, 23, 25, 53, 59, 61, 67, 35, 73, 377, 407, 139, 149, 457, 118, 487, 517, 1049, 363, 373, 383, 1169, 1229, 311, 163, 331, 677, 173, 707, 2141, 2231, 569, 2321, 4687, 4867, 614, 1273, 644, 1303, 2651, 2741, 2759, 2819, 2849, 1447, 731
Offset: 1
Examples
Fractions begin with 1, 3/2, 2, 7/3, 17/6, 37/12, 43/12, 23/6, 25/6, 53/12, 59/12, 61/12, ... a(4) = 7 because 1/tau(1) + 1/tau(2) + 1/tau(3) + 1/tau(4) = 1/1 + 1/2 + 1/2 + 1/3 = 7/3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Srinivasan Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math., Vol. 45 (1916), pp. 81-84.
- B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proceedings of the London Mathematical Society, Volume s2-21, Issue 1 (1923), pp. 235-255.
Programs
-
Maple
with(numtheory): a:=n->numer(sum(1/tau(k),k=1..n)): seq(a(n),n=1..57);
-
Mathematica
Numerator[Accumulate[1/Array[DivisorSigma[0, #] &, 50]]] (* Amiram Eldar, Oct 14 2022 *)
Formula
Sum_{k=1..n} a(k)/A104529(k) ~ (n/sqrt(log(n))) * (c_0 + c_1/log(n) + ... + c_k/log(n)^k + O(1/log(n)^(k+1))), where c_0 = (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Ramanujan, 1916; Wilson, 1923). - Amiram Eldar, Oct 14 2022