cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104528 Numerator of Sum_{k=1..n} 1/tau(k), where tau(k) is the number of divisors function.

Original entry on oeis.org

1, 3, 2, 7, 17, 37, 43, 23, 25, 53, 59, 61, 67, 35, 73, 377, 407, 139, 149, 457, 118, 487, 517, 1049, 363, 373, 383, 1169, 1229, 311, 163, 331, 677, 173, 707, 2141, 2231, 569, 2321, 4687, 4867, 614, 1273, 644, 1303, 2651, 2741, 2759, 2819, 2849, 1447, 731
Offset: 1

Views

Author

Emeric Deutsch, Mar 12 2005

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 7/3, 17/6, 37/12, 43/12, 23/6, 25/6, 53/12, 59/12, 61/12, ...
a(4) = 7 because 1/tau(1) + 1/tau(2) + 1/tau(3) + 1/tau(4) = 1/1 + 1/2 + 1/2 + 1/3 = 7/3.
		

Crossrefs

Cf. A000005, A104529 (denominators).

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/tau(k),k=1..n)): seq(a(n),n=1..57);
  • Mathematica
    Numerator[Accumulate[1/Array[DivisorSigma[0, #] &, 50]]] (* Amiram Eldar, Oct 14 2022 *)

Formula

Sum_{k=1..n} a(k)/A104529(k) ~ (n/sqrt(log(n))) * (c_0 + c_1/log(n) + ... + c_k/log(n)^k + O(1/log(n)^(k+1))), where c_0 = (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Ramanujan, 1916; Wilson, 1923). - Amiram Eldar, Oct 14 2022