cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104529 Denominator of Sum_{k=1..n} 1/tau(k), where tau(k) is the number of divisors function.

Original entry on oeis.org

1, 2, 1, 3, 6, 12, 12, 6, 6, 12, 12, 12, 12, 6, 12, 60, 60, 20, 20, 60, 15, 60, 60, 120, 40, 40, 40, 120, 120, 30, 15, 30, 60, 15, 60, 180, 180, 45, 180, 360, 360, 45, 90, 45, 90, 180, 180, 180, 180, 180, 90, 45, 90, 360, 360, 45, 180, 90, 45, 180, 180, 90, 45, 315, 1260
Offset: 1

Views

Author

Emeric Deutsch, Mar 12 2005

Keywords

Examples

			1,3/2,2,7/3,17/6
a(4)=3 because 1/tau(1)+1/tau(2)+1/tau(3)+1/tau(4)=1/1+1/2+1/2+1/3=7/3.
		

Crossrefs

Cf. A104528.

Programs

  • Maple
    with(numtheory): a:=n->denom(sum(1/tau(k),k=1..n)): seq(a(n),n=1..70);
  • Mathematica
    Denominator[Accumulate[1/#&/@DivisorSigma[0,Range[70]]]] (* Harvey P. Dale, Dec 18 2012 *)

A357843 Numerators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

Original entry on oeis.org

1, 1, 1, 2, 7, 11, 17, 7, 3, 5, 7, 19, 25, 11, 25, 113, 143, 133, 163, 51, 14, 51, 61, 117, 391, 361, 391, 371, 431, 52, 119, 19, 81, 19, 81, 709, 799, 377, 799, 1553, 1733, 211, 467, 226, 467, 889, 979, 961, 1021, 991, 259, 503, 274, 2147, 2237, 274, 1141, 274
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Examples

			Fractions begin with 1, 1/2, 1, 2/3, 7/6, 11/12, 17/12, 7/6, 3/2, 5/4, 7/4, 19/12, ...
		

Crossrefs

Cf. A000005, A307704, A357844 (denominators).
Similar sequences: A104528, A211177, A357820.

Programs

  • Mathematica
    Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(numerator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_count
    def A357843(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).
a(n)/A357844(n) ~ n * Sum_{k=1..N} B_k/log(n)^(k-1/2) + O(n/log(n)^(N+1/2)), where B_k are constants, and in particular B_1 = (1/log(2) - 1) * (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Tóth, 2017).

A357845 Numerators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

Original entry on oeis.org

1, 2, 11, 65, 79, 6, 55, 769, 10837, 30691, 33421, 32251, 34591, 16613, 34591, 1039561, 365327, 356647, 373573, 365513, 1504367, 4400261, 4569521, 4501817, 149447, 146327, 149603, 147263, 151631, 49937, 25651, 75913, 38639, 114097, 232289, 230129, 4470731, 4408487
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 65/84, 79/84, 6/7, 55/56, 769/840, 10837/10920, 30691/32760, 33421/32760, 32251/32760, ...
		

Crossrefs

Cf. A000203, A065442, A065443, A068762, A357846 (denominators).
Similar sequence: A104528, A212717, A357820.

Programs

  • Mathematica
    Numerator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(numerator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_sigma
    def A357845(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).numerator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).
a(n)/A357846(n) ~ E * ((2/K-1)*(log(n) + gamma + F) + 2*log(2)*K'/K^2) + O(log(n)^(5/3)*log(log(n))^(4/3)/n), where E = Product_{p prime} alpha(p), F = Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p)), alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), K = A065442, K' = A065443 (Tóth, 2017).

A379357 Numerators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 4, 5, 11, 13, 41, 47, 122, 259, 269, 299, 152, 167, 172, 59, 4, 13, 79, 85, 43, 44, 5, 16, 161, 83, 254, 517, 29, 92, 833, 878, 6191, 6296, 6401, 6506, 26129, 27389, 27809, 28229, 5671, 5923, 5951, 6203, 6245, 6287, 6371, 6623, 33199, 33829, 34039, 34459, 34669
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 5/3, 11/6, 13/6, 41/18, 47/18, 122/45, 259/90, 269/90, 299/90, 152/45, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104528, A379358 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A007425(k)).
a(n)/A379358(n) = Sum_{i=1..N} b_i * n / log(n)^(i-1/3) + O(n / log(n)^(N+1-1/3)), for any fixed N >= 1, where b_i are constants. The same formula holds (with different constants) for any Piltz function d_k(n), for k >= 2, when 1/3 is replaced by 1/k.

A383055 Numerators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 3, 2, 5, 3, 13, 15, 17, 19, 5, 11, 23, 25, 13, 27, 29, 31, 8, 17, 35, 9, 37, 39, 10, 21, 43, 45, 23, 12, 97, 101, 105, 107, 109, 111, 113, 117, 119, 121, 123, 127, 16, 33, 67, 17, 69, 71, 18, 37, 75, 19, 77, 79, 20, 81, 41, 83, 21, 43, 173, 177, 179, 181, 185
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104528.
Cf. A002161, A034444, A345288, A383056 (denominators).
Similar sequences: A064608, A370898, A379513.

Programs

  • Mathematica
    Numerator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034444(k)).
a(n)/A383056(n) = (c/sqrt(Pi)) * n / sqrt(log(n)) + O(n / log(n)^(3/2)), where c = A345288 (De Koninck and Ivić, 1980).

A386921 Numerators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function.

Original entry on oeis.org

1, 5, 13, 4, 3, 7, 23, 25, 53, 7, 5, 11, 23, 73, 377, 49, 67, 18, 113, 77, 41, 21, 257, 131, 68, 559, 287, 73, 599, 307, 629, 213, 109, 83, 337, 689, 719, 739, 1493, 1523, 4609, 4699, 33253, 34513, 34933, 35353, 36193, 36613, 37033, 37663, 38083, 7667, 7835, 7891
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2025

Keywords

Examples

			Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ...
		

Crossrefs

Cf. A000005, A008329, A008864, A104528, A386922 (denominators).

Programs

  • Mathematica
    Numerator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]]
  • PARI
    list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(numerator(s), ", "));}

Formula

a(n) = numerator(Sum_{k=1..n} 1/A008329(k)).
a(n)/A386922(n) <= 4 * K * n/log(n)^(3/2) + O(n*log(log(n))/log(n)^(5/2)), where K = (1/sqrt(Pi)) * Product_{p prime} sqrt(p/(p-1)) * (p * log(p/(p-1)) - 1/(p-1)) = 0.25320111501639846923... (Iudelevich, 2022). Gabdullin et al. (2023) conjectured that a(n)/A386922(n) ~ K * n/log(n)^(3/2).

A357818 Numerators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 4, 19, 7, 23, 2, 17, 53, 55, 169, 175, 89, 641, 1303, 331, 1345, 1373, 1387, 7061, 2377, 9613, 29119, 29539, 29749, 6017, 6065, 6121, 6163, 31151, 31291, 15803, 3977, 16013, 48319, 24317, 12211, 233899, 58774, 472757, 59344, 119543, 1918673, 21249043, 21336823
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 7/4, 23/12, 2, 17/8, 53/24, 55/24, 169/72, 175/72, 89/36, ...
		

Crossrefs

Cf. A001615, A173290, A357819 (denominators).
Similar sequences: A028415, A104528, A212717.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Numerator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = numerator(Sum_{k=1..n} 1/psi(k)).
a(n)/A357819(n) ~ C * (log(n) + gamma + D) + O(log(n)^(2/3) * log(log(n))^(4/3) / n), where C = Product_{p prime} (1 - 1/(p*(p+1))) (A065463), and D = Sum_{p prime} log(p)/(p^2+p-1) (A335707) (Sita Ramaiah and Suryanarayana, 1979; Tóth, 2017).
Showing 1-7 of 7 results.