cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104528 Numerator of Sum_{k=1..n} 1/tau(k), where tau(k) is the number of divisors function.

Original entry on oeis.org

1, 3, 2, 7, 17, 37, 43, 23, 25, 53, 59, 61, 67, 35, 73, 377, 407, 139, 149, 457, 118, 487, 517, 1049, 363, 373, 383, 1169, 1229, 311, 163, 331, 677, 173, 707, 2141, 2231, 569, 2321, 4687, 4867, 614, 1273, 644, 1303, 2651, 2741, 2759, 2819, 2849, 1447, 731
Offset: 1

Views

Author

Emeric Deutsch, Mar 12 2005

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 7/3, 17/6, 37/12, 43/12, 23/6, 25/6, 53/12, 59/12, 61/12, ...
a(4) = 7 because 1/tau(1) + 1/tau(2) + 1/tau(3) + 1/tau(4) = 1/1 + 1/2 + 1/2 + 1/3 = 7/3.
		

Crossrefs

Cf. A000005, A104529 (denominators).

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/tau(k),k=1..n)): seq(a(n),n=1..57);
  • Mathematica
    Numerator[Accumulate[1/Array[DivisorSigma[0, #] &, 50]]] (* Amiram Eldar, Oct 14 2022 *)

Formula

Sum_{k=1..n} a(k)/A104529(k) ~ (n/sqrt(log(n))) * (c_0 + c_1/log(n) + ... + c_k/log(n)^k + O(1/log(n)^(k+1))), where c_0 = (1/sqrt(Pi)) * Product_{p prime} sqrt(p^2-p) * log(p/(p-1)) (Ramanujan, 1916; Wilson, 1923). - Amiram Eldar, Oct 14 2022

A357844 Denominators of the partial alternating sums of the reciprocals of the number of divisors function (A000005).

Original entry on oeis.org

1, 2, 1, 3, 6, 12, 12, 6, 2, 4, 4, 12, 12, 6, 12, 60, 60, 60, 60, 20, 5, 20, 20, 40, 120, 120, 120, 120, 120, 15, 30, 5, 20, 5, 20, 180, 180, 90, 180, 360, 360, 45, 90, 45, 90, 180, 180, 180, 180, 180, 45, 90, 45, 360, 360, 45, 180, 45, 90, 180, 180, 45, 90, 630
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357843 for more details.

Crossrefs

Cf. A000005, A307704, A357843 (numerators).
Similar sequences: A104529, A211178, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[0, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / numdiv(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_count
    def A357844(n): return sum(Fraction(1 if k&1 else -1, divisor_count(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/d(k)), where d(k) = A000005(k).

A357846 Denominators of the partial alternating sums of the reciprocals of the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 12, 84, 84, 7, 56, 840, 10920, 32760, 32760, 32760, 32760, 16380, 32760, 1015560, 338520, 338520, 338520, 338520, 1354080, 4062240, 4062240, 4062240, 131040, 131040, 131040, 131040, 131040, 43680, 21840, 65520, 32760, 98280, 196560, 196560, 3734640, 3734640
Offset: 1

Views

Author

Amiram Eldar, Oct 16 2022

Keywords

Comments

See A357845 for more details.

Crossrefs

Cf. A000203, A068762, A357845 (numerators).
Similar sequence: A104529, A212718, A357821.

Programs

  • Mathematica
    Denominator[Accumulate[Array[(-1)^(# + 1)/DivisorSigma[1, #] &, 60]]]
  • PARI
    lista(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / sigma(k); print1(denominator(s), ", "))};
    
  • Python
    from fractions import Fraction
    from sympy import divisor_sigma
    def A357846(n): return sum(Fraction(1 if k&1 else -1, divisor_sigma(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, Oct 16 2022

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/sigma(k)), where sigma(k) = A000203(k).

A379358 Denominators of the partial sums of the reciprocals of the 3rd Piltz function d_3(n) (A007425).

Original entry on oeis.org

1, 3, 3, 6, 6, 18, 18, 45, 90, 90, 90, 45, 45, 45, 15, 1, 3, 18, 18, 9, 9, 1, 3, 30, 15, 45, 90, 5, 15, 135, 135, 945, 945, 945, 945, 3780, 3780, 3780, 3780, 756, 756, 756, 756, 756, 756, 756, 756, 3780, 3780, 3780, 3780, 3780, 3780, 756, 756, 3780, 3780, 3780
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 12-13, Theorem 1.2.
  • József Sándor, Dragoslav S. Mitrinović, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 59.

Crossrefs

Cf. A007425, A061201, A104529, A379357 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2; d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/d3[n], {n, 1, 100}]]]
  • PARI
    d3(n) = vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / d3(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A007425(k)).

A383056 Denominators of the partial sums of the reciprocals of the number of unitary divisors function (A034444).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 4, 4, 4, 1, 2, 4, 4, 2, 4, 4, 4, 1, 2, 4, 1, 4, 4, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 1, 4, 4, 1, 2, 4, 1, 4, 4, 1, 4, 2, 4, 1, 2, 8, 8, 8, 8, 8, 8, 2, 1, 4, 2, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 4, 4, 2, 1, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2025

Keywords

Examples

			Fractions begin with 1, 3/2, 2, 5/2, 3, 13/4, 15/4, 17/4, 19/4, 5, 11/2, 23/4, ...
		

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions, North-Holland Publishing Company, Amsterdam, Netherlands, 1980. See pp. 42-43.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 50.

Crossrefs

The unitary analog of A104529.
Cf. A034444, A383055 (numerators).
Similar sequences: A064608, A370898, A379514.

Programs

  • Mathematica
    Denominator[Accumulate[1/Array[2^PrimeNu[#] &, 100]]]
  • PARI
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / 2^omega(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034444(k)).

A386922 Denominators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function.

Original entry on oeis.org

2, 6, 12, 3, 2, 4, 12, 12, 24, 3, 2, 4, 8, 24, 120, 15, 20, 5, 30, 20, 10, 5, 60, 30, 15, 120, 60, 15, 120, 60, 120, 40, 20, 15, 60, 120, 120, 120, 240, 240, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 1008, 1008, 1008, 1008, 63, 1008, 5040, 5040
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2025

Keywords

Examples

			Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ...
		

Crossrefs

Cf. A000005, A008329, A008864, A104529, A386921 (numerators).

Programs

  • Mathematica
    Denominator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]]
  • PARI
    list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(denominator(s), ", "));}

Formula

a(n) = denominator(Sum_{k=1..n} 1/A008329(k)).

A357819 Denominators of the partial sums of the reciprocals of the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 12, 4, 12, 1, 8, 24, 24, 72, 72, 36, 252, 504, 126, 504, 504, 504, 2520, 840, 3360, 10080, 10080, 10080, 2016, 2016, 2016, 2016, 10080, 10080, 5040, 1260, 5040, 15120, 7560, 3780, 71820, 17955, 143640, 17955, 35910, 574560, 6320160, 6320160, 6320160, 6320160
Offset: 1

Views

Author

Amiram Eldar, Oct 14 2022

Keywords

Comments

See A357818 for more details.

Crossrefs

Cf. A001615, A173290, A357818 (numerators).
Similar sequences: A048049, A104529, A212718.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Denominator[Accumulate[1/Array[psi[#] &, 50]]]
  • PARI
    f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = denominator(sum(k=1, n, 1/f(k))); \\ Michel Marcus, Oct 15 2022

Formula

a(n) = denominator(Sum_{k=1..n} 1/psi(k)).
Showing 1-7 of 7 results.