cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104541 Decimal expansion of lambda(4) in Li's criterion.

Original entry on oeis.org

3, 6, 8, 7, 9, 0, 4, 7, 9, 4, 9, 2, 2, 4, 1, 6, 3, 8, 5, 9, 0, 5, 1, 1, 4, 8, 9, 6, 3, 7, 7, 5, 6, 0, 7, 2, 2, 6, 2, 1, 6, 6, 6, 9, 3, 9, 6, 0, 8, 5, 2, 8, 0, 4, 8, 2, 3, 1, 1, 8, 8, 5, 6, 8, 5, 0, 9, 4, 6, 2, 5, 3, 2, 2, 6, 5, 7, 7, 9, 0, 2, 6, 2, 9, 0, 3, 1, 5, 2, 8, 3, 9, 8, 6, 0, 1, 5, 5, 8, 4, 2, 1
Offset: 0

Views

Author

Eric W. Weisstein, Mar 13 2005

Keywords

Examples

			0.368790479...
		

Crossrefs

Cf. A074760 (lambda_1), A104539 (lambda_2), A104540 (lambda_3), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    lambda[n_] := Limit[D[s^(n - 1) Log[RiemannXi[s]], {s, n}], s -> 1]/(n - 1)!; RealDigits[N[lambda[4], 110]][[1]][[1 ;; 102]] (* Jean-François Alcover, Oct 31 2012, after Eric W. Weisstein, updated May 18 2016 *)
    RealDigits[With[{e = EulerGamma, g = StieltjesGamma}, 1 + 2 e - 6 e^2 + 4 e^3 - e^4 + 3 Pi^2/4 + Pi^4/96 - 12 g[1] + 12 e g[1] - 4 e^2 g[1] - 2 g[1]^2 + 6 g[2] - 2 e g[2] - 2 g[3]/3 - 2 Log[4 Pi] - 7 Zeta[3]/2], 10, 110][[1]] (* Eric W. Weisstein, Feb 08 2019 *)

Formula

3*Pi^2/4 + Pi^4/96 - 2*log(4) - 2*log(Pi) + 2*gamma - 6*gamma^2 + 4*gamma^3 - gamma^4 - 12*gamma(1) + 12*gamma*gamma(1) - 4*gamma^2*gamma(1) - 2*gamma(1)^2 + 6*gamma(2) - 2*gamma*gamma(2) - 2*gamma(3)/3 - 7*zeta(3)/2 + 1. - Jean-François Alcover, Jul 02 2014