cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104551 Expansion of x/((1-x)*sqrt(1+4*x^2)).

Original entry on oeis.org

0, 1, 1, -1, -1, 5, 5, -15, -15, 55, 55, -197, -197, 727, 727, -2705, -2705, 10165, 10165, -38455, -38455, 146301, 146301, -559131, -559131, 2145025, 2145025, -8255575, -8255575, 31861025, 31861025, -123256495, -123256495, 477823895, 477823895, -1855782325, -1855782325, 7219352975
Offset: 0

Views

Author

Paul Barry, Mar 14 2005

Keywords

Comments

A transformation of the Fibonacci numbers A000045 by the Riordan array (1/sqrt(1+4*x^2), (sqrt(1+4*x^2)-1)/(2*x)).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*Sqrt(1+4*x^2)) )); // G. C. Greubel, Jan 01 2023
    
  • Mathematica
    CoefficientList[Series[x/((1-x)*Sqrt[1+4*x^2]), {x,0,40}], x] (* G. C. Greubel, Jan 01 2023 *)
  • SageMath
    def A104551_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x/((1-x)*sqrt(1+4*x^2)) ).list()
    A104551_list(40) # G. C. Greubel, Jan 01 2023

Formula

G.f.: x/((1-x)*sqrt(1+4*x^2)).
a(n) = Sum_{k=0..n} (sin(Pi*k/2)+cos(Pi*k)/2+1/2)*C(k-1,(k-1)/2)*(1-(-1)^k)/2.
D-finite with recurrence: (n-1)*a(n) = (n-1)*a(n-1) - 4*(n-2)*a(n-2) + 4*(n-2)*a(n-3). - R. J. Mathar, Feb 20 2015