A104552 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n having trapezoid weight k.
1, 1, 1, 1, 3, 2, 1, 8, 9, 4, 1, 21, 35, 25, 8, 1, 55, 128, 128, 66, 16, 1, 144, 448, 591, 422, 168, 32, 1, 377, 1515, 2537, 2350, 1298, 416, 64, 1, 987, 4984, 10304, 11897, 8481, 3796, 1008, 128, 1, 2584, 16032, 40057, 56083, 49448, 28557, 10680, 2400, 256, 1
Offset: 0
Examples
Triangle begins: 1; 1,1; 1,3,2; 1,8,9,4; 1,21,35,25,8; T(2,0)=1,T(2,1)=3, T(2,2)=2 because the six Schroeder paths of length 4, namely HH, (UD)H, H(UD), (UHD), (UD)(UD) and (UUDD) have trapezoid weights 0,1,1,1,2 and 2, respectively; the trapezoids are shown between parentheses.
Links
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Formula
G.f.=G=G(t, z) satisfies zG^2-[1-z+z(1-t)/((1-z)(1-tz))]G+1=0.
Extensions
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
Comments