A104684 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps.
1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252
Offset: 0
Examples
T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE. The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 ... 0: 1 1: 2 1 2: 6 6 1 3: 20 30 12 1 4: 70 140 90 20 1 5: 252 630 560 210 30 1 6: 924 2772 3150 1680 420 42 1 7: 3432 12012 16632 11550 4200 756 56 1 8: 12870 51480 84084 72072 34650 9240 1260 72 1 ... row n=9: 48620 218790 411840 420420 252252 90090 18480 1980 90 1, row n=10: 184756 923780 1969110 2333760 1681680 756756 210210 34320 2970 110 1. ... reformatted by _Wolfdieter Lang_, Sep 11 2016
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- Michel Bataille, Quickie Q.944, Maths. Magazine, 77, No. 4, p. 321, Answer A.944, Maths. Magazine, 77, No. 4, p. 327.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri, Volume L, 2021.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
Programs
-
Haskell
a104684 n k = a104684_tabl !! n !! k a104684_row n = a104684_tabl !! n a104684_tabl = map (map abs) $ zipWith (zipWith (*)) a130595_tabl a092392_tabl -- Reinhard Zumkeller, Dec 20 2013
-
Maple
T:=(n,k)->binomial(n,k)*binomial(2*n-k,n): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := Binomial[n, k] Binomial[2n-k, n]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)
Formula
T(n, k) = binomial(n, k)*binomial(2n-k, n) (0 <= k <= n).
G.f.: G(t, z) = 1/sqrt((1-tz)^2 - 4z).
T(n,k) = binomial(2(n-k),n-k)*binomial(2n-k,k). - Paul Barry, Mar 14 2006
T(2n,n) = C(2n,n)*C(3n,n) = C(n,n)*C(2n,n)*C(3n,n) = A006480(n). - Paul Barry, Mar 14 2006
G.f.: 1/(1-xy-2x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x... (continued fraction). - Paul Barry, Jan 06 2009
T(n,k) = Sum_{j=0..n} C(n,j)^2*C(j,k). - Paul Barry, May 28 2009
T(n,k) = [x^k]F(-n,-n;1;1+x). - Paul Barry, Oct 05 2010
T(n,k) = (n-k+1)*A060693(n,k). - Peter Luschny, May 17 2011
Comments