cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104684 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2005

Keywords

Comments

Row sums are the central Delannoy numbers (A001850). T(n,0)=A000984(n) (the central binomial numbers). Alternating row sums = 1 See the Bataille link.
Row reversed version of A063007.
Another version of [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] = 1; 0, 1; 0, 2, 1; 0, 6, 6, 1; 0, 20, 30, 12, 1; 0, 70, 140, 90, 20, 1; ..., where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 25 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with decreasing powers of x.
Coefficient array of x^n*Legendre_P(n,2/x+1). - Paul Barry, Apr 19 2009

Examples

			T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE.
The triangle T(n, k) begins:
n\k    0     1     2     3     4    5    6  7 8 ...
0:     1
1:     2     1
2:     6     6     1
3:    20    30    12     1
4:    70   140    90    20    1
5:   252   630   560   210   30     1
6:   924  2772  3150  1680  420    42    1
7:  3432 12012 16632 11550 4200   756   56  1
8: 12870 51480 84084 72072 34650 9240 1260 72 1
...
row n=9: 48620 218790 411840 420420 252252 90090 18480 1980 90 1,
row n=10: 184756 923780 1969110 2333760 1681680 756756 210210 34320 2970 110 1.
... reformatted by _Wolfdieter Lang_, Sep 11 2016
		

Crossrefs

Programs

  • Haskell
    a104684 n k = a104684_tabl !! n !! k
    a104684_row n = a104684_tabl !! n
    a104684_tabl = map (map abs) $
                   zipWith (zipWith (*)) a130595_tabl a092392_tabl
    -- Reinhard Zumkeller, Dec 20 2013
  • Maple
    T:=(n,k)->binomial(n,k)*binomial(2*n-k,n): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n, k] Binomial[2n-k, n];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)

Formula

T(n, k) = binomial(n, k)*binomial(2n-k, n) (0 <= k <= n).
G.f.: G(t, z) = 1/sqrt((1-tz)^2 - 4z).
T(n,k) = binomial(2(n-k),n-k)*binomial(2n-k,k). - Paul Barry, Mar 14 2006
T(2n,n) = C(2n,n)*C(3n,n) = C(n,n)*C(2n,n)*C(3n,n) = A006480(n). - Paul Barry, Mar 14 2006
G.f.: 1/(1-xy-2x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x... (continued fraction). - Paul Barry, Jan 06 2009
T(n,k) = Sum_{j=0..n} C(n,j)^2*C(j,k). - Paul Barry, May 28 2009
T(n,k) = [x^k]F(-n,-n;1;1+x). - Paul Barry, Oct 05 2010
T(n,k) = (n-k+1)*A060693(n,k). - Peter Luschny, May 17 2011
T(n,k) = A054142(n,k)*A000984(n-k). - Philippe Deléham, Nov 19 2011.
T(n,k) = abs(A130595(n,k)*A092392(n,k)). - Reinhard Zumkeller, Dec 20 2013