A104713 Triangle T(n,k) = binomial(n,k), read by rows, 3 <= k <=n .
1, 4, 1, 10, 5, 1, 20, 15, 6, 1, 35, 35, 21, 7, 1, 56, 70, 56, 28, 8, 1, 84, 126, 126, 84, 36, 9, 1, 120, 210, 252, 210, 120, 45, 10, 1, 165, 330, 462, 462, 330, 165, 55, 11, 1, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 286, 715, 1287, 1716
Offset: 3
Examples
First few rows of the triangle are: 1; 4, 1; 10, 5, 1; 20, 15, 6, 1; 35, 35, 21, 7, 1; 56, 70, 56, 28, 8, 1; ...
Programs
-
Maple
A104713 := proc(n,k) binomial(n,k) ; end proc; seq(seq( A104713(n,k),k=3..n),n=3..16) ; # R. J. Mathar, Oct 29 2011
Formula
T(n,k) = A007318(n,k) for n>=3, 3<=k<=n.
From Peter Bala, Jul 16 2013: (Start)
The following remarks assume an offset of 0.
Riordan array (1/(1 - x)^4, x/(1 - x)).
O.g.f.: 1/(1 - t)^3*1/(1 - (1 + x)*t) = 1 + (4 + x)*t + (10 + 5*x + x^2)*t^2 + ....
E.g.f.: (1/x*d/dt)^3 (exp(t)*(exp(x*t) - 1 - x*t - (x*t)^2/2!)) = 1 + (4 + x)*t + (10 + 5*x + x^2)*t^2/2! + ....
The infinitesimal generator for this triangle has the sequence [4,5,6,...] on the main subdiagonal and 0's elsewhere. (End)