A104725 Number of complementing systems of subsets of {0, 1, ..., n-1}.
0, 1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, 5, 11, 1, 19, 1, 52, 3, 3, 3, 62, 1, 3, 3, 45, 1, 19, 1, 11, 11, 3, 1, 200, 2, 11, 3, 11, 1, 45, 3, 45, 3, 3, 1, 113, 1, 3, 11, 203, 3, 19, 1, 11, 3, 19, 1, 355, 1, 3, 11, 11, 3, 19, 1, 200, 15, 3, 1, 113, 3
Offset: 0
Examples
a(6) = 3: {{0,1,2,3,4,5}}, {{0,1,2},{0,3}} and {{0,1},{0,2,4}}. Thus since {{0,1,2},{0,3}} is a complementing system of subsets of {0,1,2,3,4,5} we have 0=0+0, 1=1+0, 2=2+0, 3=0+3, 4=1+3, 5=2+3.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- C. T. Long, Addition Theorems for sets of Integers, Pacific J. Math. 23 (1967), 107-112.
- A. O. Munagi, Notes on A104725
- A. O. Munagi, k-Complementing Subsets of Nonnegative Integers, IJMMS 2005:2 (2005), 215-224.
- Index entries for "core" sequences
Programs
-
Maple
with(combinat): a:=proc(n::integer) local u,r,i,j,k; if n<1 then return 0; elif n=1 then return 1; end if; u:=map(x->x[2],ifactors(n)[2]); r:=add(u[i], i=1..nops(u)); add(add((-1)^i*binomial(k,i)*product(binomial(u[j]+k-i-1,u[j]), j=1..nops(u)), i=0..k-1)*bell(k-1),k=1..r); end proc: seq(a(n), n=0..90);
-
Mathematica
nmax=85; a[n_] := (u = FactorInteger[n][[All, 2]]; r = Total[u]; Sum[ Sum[(-1)^i*Binomial[k, i]* Product[ Binomial[ u[[j]]+k-i-1, u[[j]] ], {j, 1, Length[u]}], {i, 0, k-1}]*BellB[k-1], {k, 1, r}]); a[0] = 0; a[1] = 1; Table[a[n], {n, 0, nmax}](* Jean-François Alcover, Nov 18 2011, after Maple *)
Comments