cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104725 Number of complementing systems of subsets of {0, 1, ..., n-1}.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, 5, 11, 1, 19, 1, 52, 3, 3, 3, 62, 1, 3, 3, 45, 1, 19, 1, 11, 11, 3, 1, 200, 2, 11, 3, 11, 1, 45, 3, 45, 3, 3, 1, 113, 1, 3, 11, 203, 3, 19, 1, 11, 3, 19, 1, 355, 1, 3, 11, 11, 3, 19, 1, 200, 15, 3, 1, 113, 3
Offset: 0

Views

Author

Augustine O. Munagi, Mar 20 2005; Dec 20 2006

Keywords

Comments

Number of collections {S_1, S_2, ..., S_k} of subsets of {0, 1, ..., n-1}, each subset containing 0, such that every element x of {0,1, ..., n-1} can be uniquely expressed as x=x_1+x_2+ ...+ x_k with x_i in S_i for all i=1..k.

Examples

			a(6) = 3: {{0,1,2,3,4,5}}, {{0,1,2},{0,3}} and {{0,1},{0,2,4}}.
Thus since {{0,1,2},{0,3}} is a complementing system of subsets of {0,1,2,3,4,5} we have 0=0+0, 1=1+0, 2=2+0, 3=0+3, 4=1+3, 5=2+3.
		

Crossrefs

Programs

  • Maple
    with(combinat): a:=proc(n::integer) local u,r,i,j,k; if n<1 then return 0; elif n=1 then return 1; end if; u:=map(x->x[2],ifactors(n)[2]); r:=add(u[i], i=1..nops(u)); add(add((-1)^i*binomial(k,i)*product(binomial(u[j]+k-i-1,u[j]), j=1..nops(u)), i=0..k-1)*bell(k-1),k=1..r); end proc: seq(a(n), n=0..90);
  • Mathematica
    nmax=85; a[n_] := (u = FactorInteger[n][[All, 2]]; r = Total[u]; Sum[ Sum[(-1)^i*Binomial[k, i]* Product[ Binomial[ u[[j]]+k-i-1, u[[j]] ], {j, 1, Length[u]}], {i, 0, k-1}]*BellB[k-1], {k, 1, r}]); a[0] = 0; a[1] = 1; Table[a[n], {n, 0, nmax}](* Jean-François Alcover, Nov 18 2011, after Maple *)

Formula

a(0)=0, a(1)=1, a(n)=Sum(ordfac(n,k)*Bell(k-1),k=1..Omega(n)), n>1, where ordfac(n,k)=number of ordered factorizations of n into k factors.
a(n)= A074206(n) if A001222(n)=1, 2.