A104728 Triangle T(n,k) = (k-1-n)*(k-2-n)*(k-2+2*n)/2 read by rows, 1<=k<=n.
1, 9, 4, 30, 18, 7, 70, 48, 27, 10, 135, 100, 66, 36, 13, 231, 180, 130, 84, 45, 16, 364, 294, 225, 160, 102, 54, 19, 540, 448, 357, 270, 190, 120, 63, 22, 765, 648, 532, 420, 315, 220, 138, 72, 25, 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28, 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31
Offset: 1
Examples
The first few rows of the triangle are: 1; 9, 4; 30, 18, 7; 70, 48, 27, 10; 135, 100, 66, 36, 13; 231, 180, 130, 84, 45, 16; 364, 294, 225, 160, 102, 54, 19; 540, 448, 357, 270, 190, 120, 63, 22; 765, 648, 532, 420, 315, 220, 138, 72, 25; 1045, 900, 756, 616, 483, 360, 250, 156, 81, 28; 1386, 1210, 1035, 864, 700, 546, 405, 280, 174, 90, 31; 1794, 1584, 1375, 1170, 972, 784, 609, 450, 310, 192, 99, 34, etc.
Programs
-
Maple
A104728 := proc(n) (k-1-n)*(k-2-n)*(k-2+2*n)/2 ; end proc: seq(seq(A104728(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 07 2011
-
Mathematica
Table[(k-1-n)(k-2-n)(k-2+2n)/2,{n,20},{k,n}]//Flatten (* Harvey P. Dale, Dec 25 2018 *)
Extensions
Name contributed by R. J. Mathar, Nov 07 2011
Comments