A104793 Triangle T(n,k) = A023537(n-k), n >= 1, 0 <= k < n, read by rows.
1, 5, 1, 13, 5, 1, 28, 13, 5, 1, 54, 28, 13, 5, 1, 98, 54, 28, 13, 5, 1, 171, 98, 54, 28, 13, 5, 1, 291, 171, 98, 54, 28, 13, 5, 1, 487, 291, 171, 98, 54, 28, 13, 5, 1, 806, 487, 291, 171, 98, 54, 28, 13, 5, 1, 1324, 806, 487, 291, 171, 98, 54, 28, 13, 5, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 5, 1; 13, 5, 1; 28, 13, 5, 1; 54, 28, 13, 5, 1; 98, 54, 28, 13, 5, 1; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..12], n-> List([0..n-1], k-> Lucas(1, -1, n-k+4)[2] -3*n+3*k-7 ))); # G. C. Greubel, Jun 01 2019
-
Magma
[[Lucas(n-k+4) -(3*n-3*k+7): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Jun 01 2019
-
Mathematica
Table[LucasL[n-k+4] -3*n+3*k-7, {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jun 01 2019 *)
-
PARI
{T(n,k) = fibonacci(n-k+5) + fibonacci(n-k+3) -3*n +3*k - 7}; \\ G. C. Greubel, Jun 01 2019
-
Sage
[[lucas_number2(n-k+4, 1, -1) -3*n+3*k-7 for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jun 01 2019
Formula
From Ralf Stephan, Apr 05 2009: (Start)
T(n,k) = Lucas(n-k+4) - (3*n - 3*k + 7).
Extensions
Edited by Ralf Stephan, Apr 05 2009
Comments