cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104804 "Rounded hypotenuses": a(n) = round(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 33, 42, 53, 68, 86, 110, 140, 178, 226, 288, 366, 466, 593, 754, 959, 1220, 1552, 1974, 2511, 3194, 4063, 5168, 6574, 8362, 10637, 13530, 17211, 21892, 27847, 35422, 45057, 57314, 72904, 92736, 117962, 150050
Offset: 1

Views

Author

Zak Seidov, Mar 26 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Round[ Sqrt[ a[n - 1]^2 + a[n - 2]^2]]; a[1] = 1; a[2] = 3; Table[ a[n], {n, 48}] (* Robert G. Wilson v, Mar 28 2005 *)
  • Python
    from gmpy2 import isqrt_rem
    A104804_list = [1,3]
    for _ in range(1000):
        i, j = isqrt_rem(A104804_list[-1]**2+A104804_list[-2]**2)
        A104804_list.append(int(i+ int(4*(j-i) >= 1))) # Chai Wah Wu, Aug 16 2016

Formula

a(n) = A063827(n) for n > 2. - Georg Fischer, Oct 07 2018

Extensions

More terms from Robert G. Wilson v, Mar 28 2005