A104858 Partial sums of the little Schroeder numbers (A001003).
1, 2, 5, 16, 61, 258, 1161, 5440, 26233, 129282, 648141, 3294864, 16943733, 87983106, 460676625, 2429478144, 12893056497, 68802069506, 368961496469, 1987323655056, 10746633315501, 58321460916482, 317537398625945
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Programs
-
Maple
G:=(1+z-sqrt(1-6*z+z^2))/4/z/(1-z): Gser:=series(G,z=0,29): 1,seq(coeff(Gser,z^n),n=1..27);
-
Mathematica
CoefficientList[Series[(1+x-Sqrt[1-6*x+x^2])/4/x/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
Formula
G.f.: (1 + z- sqrt(1 - 6*z + z^2))/(4*z*(1 - z)).
Recurrence: (n+1)*a(n) = (7*n-2)*a(n-1) - (7*n-5)*a(n-2) + (n-2)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Define a triangle T(n,1) = T(n,n) = 1 for n >= 1 and all other elements by T(r,c) = T(r,c-1) + T(r-1,c-1) + T(r-1,c). Its second column is A005408, its third column is A059993, and the sum of all terms in its row n is a(n-1). - J. M. Bergot, Dec 01 2012
Comments