A104900 Numbers n such that sigma(n) = 6*phi(n).
6, 70, 616, 1240, 2090, 8932, 17980, 19780, 20320, 26980, 29512, 43180, 49742, 51688, 58058, 79000, 100130, 116870, 128570, 175370, 176715, 201376, 208280, 221536, 275770, 280670, 282680, 302176, 373065, 427924, 435435, 470764, 483616, 618772, 642124
Offset: 1
Keywords
Examples
p>2, q=2^p-1(q is prime); m=5*2^(p-2)*q so sigma(m)=6*(2^(p-1)-1)*2^p=6*phi(m) hence m is in the sequence. sigma(79000)=187200=6*31200 =6*phi(79000) so 79000 is in the sequence but 79000 is not of the form 5*2^(p-2)*(2^p-1).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
- Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
- Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
Programs
-
Mathematica
Do[If[DivisorSigma[1, m] == 6*EulerPhi[m], Print[m]], {m, 1000000}]
-
PARI
is(n)=sigma(n)==6*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
-
PARI
v=List(); forfactored(n=6,10^6, if(sigma(n)==6*eulerphi(n), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, May 09 2017
Comments