cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104902 Numbers n such that sigma(n) = 12*phi(n).

Original entry on oeis.org

210, 1848, 2970, 3720, 6270, 26796, 38340, 53940, 59340, 60960, 70686, 78210, 80940, 88536, 129540, 142290, 149226, 155064, 174174, 237000, 249210, 300390, 350610, 385710, 429408, 526110, 604128, 624840, 664608, 827310, 828072, 842010, 848040, 906528
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 01 2005

Keywords

Comments

If p>2 and 2^p-1 is prime (a Mersenne prime) then 15*2^(p-2)*(2^p-1) is in the sequence. So 15*2^(A000043-2)*(2^A000043-1) is a subsequence of this sequence.

Examples

			p>2, q=2^p-1(q is prime); m=15*2^(p-2)*q so sigma(m)=24*(2^(p-1)-1)*2^p=12*(8*2^(p-3)*(2^p-2))=12*phi(m) hence m is in the sequence.
sigma(237000)=748800=12*62400=12*phi(237000) so 237000 is in the sequence but 237000 is not of the form 15*2^(p-2)*(2^p-1).
		

Crossrefs

Programs

  • Mathematica
    Do[If[DivisorSigma[1, m] == 12*EulerPhi[m], Print[m]], {m, 1200000}]
  • PARI
    is(n)=sigma(n)==12*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013