A104974 A Fredholm-Rueppel triangle.
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
Offset: 0
Examples
Triangle begins as: 1; 0, 1; 1, 0, 1; 0, 1, 0, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 0, 1; 1, 0, 0, 0, 1, 0, 1; 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[(Catalan(n-k+1) mod 2): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 08 2021
-
Maple
A104974 := proc(n,k) modp(A000108(n+1-k),2); end proc: seq(seq( A104974(n,k), k=0..n), n=0..15); # R. J. Mathar, Apr 21 2021
-
Mathematica
Table[Mod[CatalanNumber[n-k+1], 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 08 2021 *)
-
Sage
flatten([[mod(catalan_number(n-k+1), 2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 08 2021
Formula
T(n, k) = A000108(n+1-k) mod 2. [Corrected by R. J. Mathar, Apr 21 2021]
Sum_{k=0..n} T(n, k) = A000523(n+1).
Comments