cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104976 Row sums of A104975.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, -1, -1, 2, 2, -2, -2, 4, 4, -6, -6, 9, 9, -13, -13, 21, 21, -31, -31, 47, 47, -71, -71, 109, 109, -165, -165, 250, 250, -380, -380, 578, 578, -876, -876, 1330, 1330, -2020, -2020, 3068, 3068, -4656, -4656, 7070, 7070, -10736, -10736, 16300, 16300, -24746, -24746, 37574, 37574, -57050, -57050
Offset: 0

Views

Author

Paul Barry, Mar 30 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= t[n, k]= If[k==n, 1, ((1+(-1)^(n-k))/2)*Sum[Binomial[k, j]*t[(n-k)/2, j], {j,(n-k)/2}] ];
    S[n_]:= Sum[(-1)^j*t[n, j], {j,0,n}]; (* S = A104977 *)
    a[n_]:= a[n]= Sum[If[EvenQ[n-k], S[(n-k)/2], 0], {k,0,n}];
    Table[a[n], {n, 0, 65}] (* G. C. Greubel, Jun 08 2021 *)
  • Sage
    @CachedFunction
    def t(n,k): return 1 if (k==n) else ((1+(-1)^(n-k))/2)*sum( binomial(k, j)*t((n-k)/2, j) for j in (1..(n-k)//2) )
    def S(n): return sum( (-1)^j*t(n, j) for j in (0..n) ) # S = A104977
    def T(n,k): return S((n-k)/2) if (mod(n-k, 2)==0) else 0 # T = A104975
    def a(n): return sum( T(n,k) for k in (0..n) )
    [a(n) for n in (0..65)] # G. C. Greubel, Jun 08 2021

Formula

a(n) = Sum_{k=0..n} A104975(n, k).
G.f.: x^2/((1-x)*(Sum_{k>=1} x^(2^k))).