A104986 Matrix logarithm of triangle A104980.
0, 1, 0, 2, 2, 0, 7, 4, 3, 0, 33, 14, 7, 4, 0, 191, 66, 27, 11, 5, 0, 1297, 382, 137, 48, 16, 6, 0, 10063, 2594, 843, 270, 79, 22, 7, 0, 87669, 20126, 6041, 1820, 495, 122, 29, 8, 0, 847015, 175338, 49219, 14176, 3679, 848, 179, 37, 9, 0, 8989301, 1694030, 448681, 124828, 31361, 6930, 1371, 252, 46, 10, 0
Offset: 0
Examples
Triangle begins: 0; 1, 0; 2, 2, 0; 7, 4, 3, 0; 33, 14, 7, 4, 0; 191, 66, 27, 11, 5, 0; 1297, 382, 137, 48, 16, 6, 0; 10063, 2594, 843, 270, 79, 22, 7, 0; 87669, 20126, 6041, 1820, 495, 122, 29, 8, 0; 847015, 175338, 49219, 14176, 3679, 848, 179, 37, 9, 0; 8989301, 1694030, 448681, 124828, 31361, 6930, 1371, 252, 46, 10, 0; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
nmax = 10; M = Table[If[n == k, 0, If[n == k+1, -n+1, -Coefficient[(1-1/Sum[i! x^i, {i, 0, n}])/x + O[x]^n, x, n-k-1]]], {n, 1, nmax+1}, {k, 1, nmax+1}]; T[n_, k_] /; 0 <= k <= n := Sum[(-1)^p MatrixPower[M, p][[n+1, k+1]]/p, {p, 1, n+1}]; T[, ] = 0; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
-
PARI
T(n,k)=if(n
Formula
T(n, 0) = A104981(n), T(n+1, 1) = 2*T(n, 0) for n>=0.
Comments