cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A366159 Triangle read by rows: T(n, k) = Sum_{i=0..k-2} (-1)^(i+2) * (k-i-1)^n * binomial(k,i).

Original entry on oeis.org

1, 1, 5, 1, 13, 23, 1, 29, 121, 119, 1, 61, 479, 1081, 719, 1, 125, 1681, 6719, 10081, 5039, 1, 253, 5543, 35281, 90719, 100801, 40319, 1, 509, 17641, 168839, 665281, 1239839, 1088641, 362879, 1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799
Offset: 2

Views

Author

Michel Marcus, Oct 02 2023

Keywords

Examples

			Triangle begins:
  1;
  1,    5;
  1,   13,    23;
  1,   29,   121,    119;
  1,   61,   479,   1081,     719;
  1,  125,  1681,   6719,   10081,     5039;
  1,  253,  5543,  35281,   90719,   100801,    40319;
  1,  509, 17641, 168839,  665281,  1239839,  1088641,   362879;
  1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799;
  ...
		

Crossrefs

Cf. A000012 (col 2), A036563 (col 3), A033312 (right border).
Cf. A105060.

Programs

  • Mathematica
    Table[Sum[(-1)^(i + 2)*(k - i - 1)^n*Binomial[k, i], {i, 0, k - 2} ], {n, 2, 10}, {k, 2, n}] // Flatten (* Michael De Vlieger, Oct 02 2023 *)
  • PARI
    T(n, k) = sum(i=0, k-2, (-1)^(i+2) * (k-i-1)^n * binomial(k,i));
    tabl(nn) = for (n=2, nn, for (k=2, n, print1(T(n,k), ", ")));
Showing 1-1 of 1 results.