A105114 Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 2.
1, 1, 1, 1, 2, 2, 4, 3, 1, 7, 6, 3, 12, 13, 6, 1, 21, 26, 13, 4, 37, 50, 30, 10, 1, 65, 96, 66, 24, 5, 114, 184, 139, 59, 15, 1, 200, 350, 288, 140, 40, 6, 351, 661, 591, 318, 105, 21, 1, 616, 1242, 1199, 704, 266, 62, 7, 1081, 2324, 2406, 1533, 645, 174, 28, 1, 1897, 4332
Offset: 0
Examples
T(7,3) = 4 because we have (1,2,2,2), (2,1,2,2), (2,2,1,2) and (2,2,2,1). Triangle begins: 1; 1; 1, 1; 2, 2; 4, 3, 1; 7, 6, 3; 12, 13, 6, 1; 21, 26, 13, 4; 37, 50, 30, 10, 1; 65, 96, 66, 24, 5; 114, 184, 139, 59, 15, 1; 200, 350, 288, 140, 40, 6; 351, 661, 591, 318, 105, 21, 1; 616, 1242, 1199, 704, 266, 62, 7;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
G:=(1-z)/(1-2*z-z^2*t+z^3*t+z^2-z^3):Gser:=simplify(series(G,z=0,18)): P[0]:=1: for n from 1 to 16 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 16 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;# yields sequence in triangular form
-
Mathematica
nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[1/(1-(x/(1-x)-x^2+y x^2)),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Nov 05 2012 *)
Formula
G.f.: (1-z)/(1-2z+z^2-z^3-tz^2+tz^3).
Comments