A105124 Three-dimensional small Schroeder numbers.
1, 1, 11, 197, 4593, 126289, 3888343, 130016393, 4629617873, 173225211953, 6746427428131, 271578345652109, 11240106619304609, 476332107976984545, 20601333127791572143, 906951532759564554769, 40554743852511698293601
Offset: 0
Links
- R. A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. (see page 16).
Crossrefs
Cf. A088594.
Programs
-
PARI
{alias(C,binomial); a(n)=if(n==0,1,sum(k=0,2*n-2, 2^k*sum(j=0,k, 2*(-1)^(k-j)*C(3*n+1,k-j)*C(n+j,n)*C(n+j+1,n)*C(n+j+2,n)/(n+1)^2/(n+2))))} \\ Hanna
Formula
From Paul D. Hanna, Apr 19 2005: (Start)
a(n) = A088594(n)/4 for n>0.
a(0)=1, a(n) = Sum_{k=0..2*n-2} 2^k*Sum_{j=0..k} 2*(-1)^(k-j)*C(3*n+1, k-j)*C(n+j, n)*C(n+j+1, n)*C(n+j+2, n)/(n+1)^2/(n+2) (Sulanke). (End)
Extensions
More terms from Paul D. Hanna, Apr 19 2005
Comments