A105247 Product of digits of Roman Numerals.
1, 1, 1, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 500, 500, 500, 500, 500, 1000, 1000, 1000, 1000, 1000, 5000, 5000, 5000, 5000, 5000, 10000, 500, 500, 500, 500, 2500, 2500, 2500, 2500, 2500, 5000, 50, 50, 50, 50, 250
Offset: 1
Examples
a(3) = 1 because 3 = "III" and I*I*I = I = 1. a(4) = 5 because 4 = "IV" and I*V = V = 5. a(9) = 10 because 9 = "IX" and I*X = X = 10. a(14) = 50 because 14 = "XIV" and X*I*V = L = 50. a(19) = 100 because 19 = "XIX" and X*I*X = C = 100. a(24) = 500 because 24 = "XXIV" and X*X*I*V = D = 500. a(29) = 1000 because 29 = "XXIX" and X*X*I*X = M = 1000. a(34) = 5000 because 34 = "XXXIV" and X*X*X*I*V = 5000. a(39) = 10000 because 39 = "XXXIX" and X*X*X*I*X = myriad = 10000. a(40) = 500 because 40 = "XL" and X*L = D = 500. a(44) = 2500 because 44 = "XLIV" and X*L*I*V = MMD = 2500. a(49) = 5000 because 49 = "XLIX" and X*L*I*X = 5000. a(50) = 50 because 50 = L.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..3999
- Gerard Schildberger and Frank Ellermann, The numbers from 1 to 3999 expressed as Roman numerals.
Programs
-
Maple
with(StringTools): A105247 := proc(n) local r: r:=convert(n, roman): return mul(parse(SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll( SubstituteAll(r[j], "I", "1"), "V", "5"), "X", "10"), "L", "50"), "C", "100"), "D", "500"), "M", "1000")),j=1..length(r)): end: seq(A105247(n),n=1..54); # Nathaniel Johnston, May 18 2011
Comments