cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105258 Triangle of trajectory of 1 under the morphism 1->2, 2->13, 3->1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 1, 3
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2005

Keywords

Examples

			The first steps are:
{1}
{1, 2}
{1, 2, 2, 1, 3}
{1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1}
		

Crossrefs

Programs

  • Mathematica
    s[1] = {2}; s[2] = {1, 3}; s[3] = {1}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = Flatten[Table[p[n], {n, 0, 6}]]
  • PARI
    {a(n)=local(m, v, w); v=w=[1]; while(length(w)
    				

Extensions

Edited by the Associate Editors of the OEIS, Apr 07 2009