cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105261 Values of n such that phi(n)=c(n)^2, where phi is the Euler totient function and c(n) is the product of the distinct prime factors of n (c(1)=1).

Original entry on oeis.org

1, 8, 108, 250, 6174, 41154
Offset: 1

Views

Author

Emeric Deutsch, Apr 14 2005

Keywords

Comments

This sequence has exactly six terms (see the Monthly reference). phi(n)=A000010(n); c(n)=A007947(n).

Examples

			8 is in the sequence because phi(8)=4 (1,3,5,7), c(8)=2 (2 being the only prime divisor of 8) and so phi(8)=c(8)^2.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008.
  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 745 ; pp 95; 317-8, Ellipses Paris 2004.
  • J.-M. De Koninck & A. Mercier, 1001 Problems in Classical Number Theory, Problem 745 ; pp 80; 273-4, Amer. Math. Soc. Providence RI 2007.

Crossrefs

Programs

  • Maple
    with(numtheory): c:=proc(n) local div: div:=convert(factorset(n),list): product(div[j],j=1..nops(div)) end:p:=proc(n) if phi(n)=c(n)^2 then n else fi end: seq(p(n),n=1..42000);
  • Mathematica
    Select[Range[42000], EulerPhi[#] == Times @@ FactorInteger[#][[All,1]]^2 & ] (* Jean-François Alcover, Sep 12 2011 *)