A105292 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n, having leftmost column of height k.
1, 1, 1, 2, 2, 1, 5, 4, 3, 1, 13, 10, 6, 4, 1, 34, 26, 15, 8, 5, 1, 89, 68, 39, 20, 10, 6, 1, 233, 178, 102, 52, 25, 12, 7, 1, 610, 466, 267, 136, 65, 30, 14, 8, 1, 1597, 1220, 699, 356, 170, 78, 35, 16, 9, 1, 4181, 3194, 1830, 932, 445, 204, 91, 40, 18, 10, 1, 10946, 8362
Offset: 1
Examples
Triangle begins: 1; 1,1; 2,2,1; 5,4,3,1; 13,10,6,4,1;
Links
- Elena Barcucci, Alberto del Lungo, S. Fezzi, and Renzo Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- Emeric Deutsch and Helmut Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
- Juan B. Gil, Felix H. Xu, and William Y. Zhu, Odd-indexed Fibonacci numbers via pattern-avoiding permutations, arXiv:2506.15800 [math.CO], 2025. See p. 4.
Programs
-
Maple
with(combinat):T:=proc(n,k) if k
-
Mathematica
Flatten[Join[{1},#]&/@Table[k*Fibonacci[2n-2k-1],{n,15},{k,n-1}]] (* Harvey P. Dale, Aug 21 2013 *)
Formula
T(n, k)=k*fibonacci(2n-2k-1) if k
Comments