A105374 a(n) = 4*n^3 + 4*n.
0, 8, 40, 120, 272, 520, 888, 1400, 2080, 2952, 4040, 5368, 6960, 8840, 11032, 13560, 16448, 19720, 23400, 27512, 32080, 37128, 42680, 48760, 55392, 62600, 70408, 78840, 87920, 97672, 108120, 119288, 131200, 143880, 157352, 171640, 186768, 202760, 219640, 237432
Offset: 0
Examples
a(5) = 4*5^3 + 4*5 = 500 + 20 = 520.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[0, 8, 40, 120]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 26 2012
-
Mathematica
CoefficientList[Series[8*x*(1+x+x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,40,120},50] (* Vincenzo Librandi, Jun 26 2012 *)
-
PARI
a(n)=4*n^3+4*n \\ Charles R Greathouse IV, Oct 16 2015
Formula
G.f.: 8*x*(1 + x + x^2)/(1-x)^4. - Colin Barker, May 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 26 2012
a(n) = 8*A006003(n). - Bruce J. Nicholson, Apr 18 2017
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: 4*x*(1 + x)*(2 + x)*exp(x).
a(n) = 4*A034262(n). (End)
Comments