A105384 Expansion of x/(1 + x + x^2 + x^3 + x^4).
0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1).
Formula
Euler transform of length 5 sequence [ -1, 0, 0, 0, 1].
G.f.: x(1-x)/(1-x^5);
a(n) = -sqrt(1/5 + 2*sqrt(5)/25)*cos(4*Pi*n/5 + Pi/10) + sqrt(5)*sin(4*Pi*n/5 + Pi/10)/5 + sqrt(1/5 - 2*sqrt(5)/25)*cos(2*Pi*n/5 + 3*Pi/10) + sqrt(5)*sin(2*Pi*n/5 + 3*Pi/10)/5.
a(n) = A010891(n-1). - R. J. Mathar, Apr 07 2008
a(n) + a(n-1) = A092202(n). - R. J. Mathar, Jun 23 2021
Extensions
Corrected by N. J. A. Sloane, Nov 05 2005
Comments