A105402 Positive integers k such that the prime factors of sigma(k) are a subset of the prime factors of k.
1, 6, 28, 30, 42, 66, 84, 102, 120, 138, 186, 210, 270, 282, 318, 330, 364, 420, 426, 462, 496, 510, 546, 570, 642, 672, 690, 714, 762, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1146, 1302, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890
Offset: 1
Examples
102 is a term since 102 = 2*3*17 and sigma(102) = 2^3*3^3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
Programs
-
Maple
A:=select(proc(z) numtheory[factorset](sigma(z)) subset numtheory[factorset](z) end,[$1..100000]); has 716 members.
-
Mathematica
Select[Range[2000],IntegerQ[#^#/DivisorSigma[1,#]] &] (* Vicente Izquierdo Gomez, Jan 04 2013 *)
Extensions
Extended by R. J. Mathar, Dec 08 2008
Comments