cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vicente Izquierdo Gomez

Vicente Izquierdo Gomez's wiki page.

Vicente Izquierdo Gomez has authored 7 sequences.

A257974 Prime numbers that are not the sum of one or more consecutive triangular numbers.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Author

Keywords

Comments

Subsequence of primes of A050941. - Michel Marcus, Dec 14 2015
Prime numbers that are not the difference of two tetrahedral numbers (A000292). - Franklin T. Adams-Watters, Dec 16 2015

Examples

			From _Michael De Vlieger_, Nov 06 2015: (Start)
3 is a triangular number thus is not a term.
The triangular numbers <= 7 are {1, 3, 6}. None of these are 7. 7 is not found among the sums of adjacent pairs of terms, i.e., {{1, 3}, {3, 6}} = {4, 9}. The sum of all numbers {1, 3, 6} = 10. Thus 7 is a term.
The triangular numbers <= 19 are {1, 3, 6, 10, 15}. 19 is not a triangular number. 19 is not found among sums of pairs of adjacent terms {4, 9, 16, 25} nor among those of quartets of adjacent terms {20, 34}, but is found among sums of triples of adjacent terms {10, 19, 31}. Thus 19 is not a term. (End)
		

Crossrefs

Programs

  • Maple
    isA257974 := proc(n)
        if isprime(n) then
            return not isA034706(n) ;
        else
            false ;
        end if;
    end proc:
    for n from 0 to 400 do
        if isA257974(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 14 2015
  • Mathematica
    t = Array[Binomial[# + 1, 2] &, {10^4}]; fQ[n_] := Block[{s}, s = TakeWhile[t, # <= n &]; AnyTrue[Flatten[Total /@ Partition[s, #, 1] & /@ Range[Length@ s - 1]], # == n &]]; Select[Prime@ Range@ 120, ! fQ@ # &] (* Michael De Vlieger, Nov 06 2015, Version 10 *)

Extensions

More terms from Michael De Vlieger, Nov 06 2015

A259744 Smallest prime p such that, for every positive integer k <= n, the concatenation of p, prime(k)^2 and reverse(p) is prime.

Original entry on oeis.org

11, 17, 1097, 7949, 780587, 123638027, 3259714649, 76526081651
Offset: 1

Author

Keywords

Comments

a(8) found by Hans Havermann.

Examples

			a(3)=1097 because 109747901 (1097&2^2&7901) and 109797901 (1097&3^2&7901) and 1097257901 (1097&5^2&7901) are prime numbers, and 1097 is the smallest prime for which this is the case.
		

Programs

  • Mathematica
    f[n_, k_] := FromDigits[Join[
       IntegerDigits[n], IntegerDigits[Prime[k]^2],
       Reverse[IntegerDigits[n]]]]
    a[n_] := Module[{p = 2, k = 1},
      While[k <= n,
       If[PrimeQ[f[p, k]], k++, p = NextPrime[p]; k = 1];
       ];
      Return[p]
    ](* Kellen Myers, Aug 16 2015 , note this is very slow *)

A234540 Nonprimes k that divide the sum of the nonprimes up to k.

Original entry on oeis.org

1, 22, 25, 118, 414, 2745, 10623, 63201, 1039161, 1693864, 2285297, 52962021, 66998865, 232974402, 315796805, 336125877, 834972771, 1233903294, 1309750075, 1617454215, 2056836133, 5455816485, 8589896196, 9030058217, 10622144467, 12324258770, 33725308558
Offset: 1

Author

Keywords

Comments

Standard heuristics suggest that this sequence is infinite. - Charles R Greathouse IV, Dec 29 2013

Examples

			a(2) = 22 because 1 + 4 + 6 + 8 + 9 + 10 + ... + 22 = 176 and 176/22 = 8.
		

Crossrefs

Cf. A007506.

Programs

  • Mathematica
    s = 0; Do[If[PrimeQ[k], Continue[]]; s += k; If[Mod[s, k] == 0, Print[k]], {k, 10^10}] (* Gomez *)
    Select[Range[10^4], Not[PrimeQ[#]] && Divisible[Sum[Boole[Not[PrimeQ[m]]]m, {m, #}], #] &] (* Alonso del Arte, Dec 29 2013 *)
  • PARI
    v=List([s=1]); forcomposite(n=4,1e9,if(s%n==0, listput(v,n)); s+=n); Vec(v) \\ Charles R Greathouse IV, Dec 29 2013

Extensions

a(14)-a(27) from Donovan Johnson, Dec 30 2013

A216638 First appearance of the Fibonacci numbers in the decimals of Pi.

Original entry on oeis.org

1, 1, 6, 9, 4, 11, 110, 93, 86, 130, 11, 1638, 229, 3056, 268, 1510, 10118, 11477, 727, 17711, 83295, 59861, 22334, 19659, 301848, 977089, 59943, 414086, 536681, 649382, 2729036, 68232754, 17793212, 33986473, 695781, 135830965, 117951651, 36978613, 170243036, 366567058
Offset: 1

Author

Keywords

Examples

			Fibonacci(4) is 3, 3 appears for the first time in decimals of Pi in position 9, so a(4) = 9.
		

Crossrefs

Programs

  • Mathematica
    (* Determine the decimal digits of Pi following the decimal point. *)
    decimalPiDigits[n_] := First@RealDigits[Pi, 10, n, -1];
    (* Find the position of first occurrence of 'sublist' in 'list', or Indeterminate if it doesn't occur. *)
    firstPosition[sublist_, list_] :=
      With[{p = SequencePosition[list, sublist]},
       If[Length[p] == 0, Indeterminate, First@First@p]];
    (* Find the first occurrence of the given digits in the decimal digits of Pi by calculating ever more digits of Pi, as needed. *)
    findDigitSequenceInDecimalPiDigits[seq_] :=
      First@NestWhile[
        With[
          {
           numdigits = Max[1, 2*Last[#]] (*
           How many digits will we calculate in this iteration? *)
           },
          {firstPosition[seq, decimalPiDigits[numdigits]], numdigits}
          ] &,
        {Indeterminate, 0},
        Not@*IntegerQ@*First
        ];
    (* Find the first 30 entries. *)
    Table[findDigitSequenceInDecimalPiDigits[
      IntegerDigits@Fibonacci[n]], {n, 1, 30}]
    (* Sidney Cadot, Feb 25 2023 *)

Formula

a(n) = A014777(A000045(n)). - Pontus von Brömssen, Aug 31 2024

Extensions

a(31)-a(40) from Pontus von Brömssen, Aug 31 2024

A216133 In the decimal expansion of Pi, the first occurrence of these primes begins at a prime position.

Original entry on oeis.org

7, 19, 31, 41, 43, 79, 89, 107, 137, 157, 197, 233, 263, 271, 293, 317, 367, 379, 433, 449, 479, 491, 499, 601, 641, 653, 673, 751, 757, 761, 769, 787, 797, 821, 823, 827, 853, 887
Offset: 1

Author

Keywords

Comments

We label the positions in 3.14159... so that 1 is in position 1, 4 in position 2, 1 in position 3, 5 in position 4, and so on.

Examples

			The first 19 in the decimal expansion of Pi (see A000796) starts in position 37, which is a prime.
		

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    pos_in_Pi={1,6,9,2,4,7,13,11,5,49,94,148,110,1,3,....};
    s={};Do[If[PrimeQ[x]&&PrimeQ[pos_in_Pi[[x]]],AppendTo[s,pos_in_Pi]],{x,Length[v]}];s

Extensions

Edited by N. J. A. Sloane, Sep 09 2012

A215533 Numbers n such that n^s(n) + 1 is a prime, where s(n) is the sum of the digits of n.

Original entry on oeis.org

1, 2, 4, 10, 20, 100, 110, 152, 220, 242, 736, 790, 800, 916, 1010, 1078, 1106, 1232, 1528, 1636, 1834, 2284, 2330, 2392, 2600, 3100, 3562, 3904, 4000, 4066, 4228, 4444, 4552, 5056, 6082, 6208, 6226, 7810, 8170, 8530, 9520
Offset: 1

Author

Keywords

Programs

  • Mathematica
    t = {}; Do[If[PrimeQ[(n^Total[IntegerDigits[n]]) + 1], AppendTo[t, n]], {n, 10000}]; t
    Select[Range[10000],PrimeQ[#^Total[IntegerDigits[#]]+1]&] (* Harvey P. Dale, Aug 26 2019 *)

A214629 Primes p such that the sum of the digits plus the product of the digits is a prime.

Original entry on oeis.org

11, 13, 19, 23, 29, 31, 37, 43, 53, 59, 61, 73, 79, 89, 97, 101, 223, 263, 283, 401, 409, 443, 601, 607, 809, 823, 829, 883, 1013, 1019, 1031, 1033, 1039, 1051, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1163, 1171, 1181, 1187, 1193, 1213, 1231, 1259
Offset: 1

Author

Keywords

Examples

			11 is in the sequence because A061762(11) = 3 is prime.
		

Crossrefs

Cf. A061762, A344032. Primes in A185300.

Programs

  • Maple
    f:= proc(n) local L;
       L:= convert(n,base,10);
       convert(L,`+`)+convert(L,`*`)
    end proc:
    select(p -> isprime(f(p)), [seq(ithprime(i),i=1..1000)]); # Robert Israel, May 07 2021
  • Mathematica
    f[n_] := Module[{in = IntegerDigits[n]}, Times @@ in + Plus @@ in];Select[Prime[Range[300]], PrimeQ[f[#]] &]

Formula

{p in A000040: A061762(p) in A000040}. - R. J. Mathar, Aug 13 2012