A260523 Numbers n such that (sum of digits of n) + (product of digits of n) is semiprime.
2, 3, 5, 7, 14, 17, 24, 28, 33, 38, 39, 40, 41, 42, 46, 47, 49, 55, 60, 64, 67, 68, 69, 71, 74, 76, 82, 83, 86, 90, 93, 94, 96, 103, 105, 108, 109, 111, 112, 114, 116, 121, 122, 124, 126, 130, 141, 142, 144, 146, 150, 161, 162, 164, 166, 180, 190, 202, 204, 207
Offset: 1
Examples
a(6) = 17. (1+7) + (1*7) = 8 + 7 = 15 = 3 * 5, which is semiprime. a(10) = 38. (3+8) + (3*8) = 11 + 24 = 35 = 5 * 7, which is semiprime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):A260523 := proc() local a; a:= (add(d,d=convert(n, base, 10)) + mul(d,d=convert(n, base, 10)) ); if bigomega(a)=2 then RETURN (n); fi; end: seq(A260523 (),n=1..300);
-
Mathematica
Select[Range[1000], PrimeOmega[(Plus@@IntegerDigits[#]) + (Times@@IntegerDigits[#])] == 2 &]
-
PARI
for(n=1,500,d=digits(n);s=sumdigits(n);p=prod(i=1,#d,d[i]);if(bigomega(s+p)==2,print1(n,", "))) \\ Derek Orr, Aug 27 2015
Comments