cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105419 Decimal expansion of the arc length of the sine or cosine curve for one full period.

Original entry on oeis.org

7, 6, 4, 0, 3, 9, 5, 5, 7, 8, 0, 5, 5, 4, 2, 4, 0, 3, 5, 8, 0, 9, 5, 2, 4, 1, 6, 4, 3, 4, 2, 8, 8, 6, 5, 8, 3, 8, 1, 9, 9, 3, 5, 2, 2, 9, 2, 9, 4, 5, 4, 9, 4, 4, 2, 1, 6, 0, 9, 9, 3, 3, 1, 3, 4, 9, 4, 3, 9, 1, 6, 0, 2, 4, 2, 8, 6, 5, 9, 8, 4, 2, 1, 3, 2, 3, 6, 2, 1, 7, 8, 9, 0, 2, 4, 4, 4, 9, 6, 5, 6, 4, 4, 0, 8
Offset: 1

Views

Author

Robert G. Wilson v, Apr 06 2005

Keywords

Examples

			I=7.640395578055424035809524164342886583819935229294549442160993313...
		

References

  • Howard Anton, Irl C. Bivens, Stephen L. Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY, Section 7.4 Length of a Plane Curve, page 489.

Programs

  • Maple
    evalf(4*sqrt(2)*EllipticE(1/sqrt(2)), 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[ NIntegrate[ Sqrt[1 + Cos[x]^2], {x, 0, 2Pi}, MaxRecursion -> 12, WorkingPrecision -> 128], 10, 111][[1]]
    RealDigits[ N[ 4*Sqrt[2]*EllipticE[1/2], 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Formula

Equals Integral_{x=0..2*Pi} sqrt(1+cos(x)^2) dx.
Also equals 4*B+Pi/B where B is the lemniscate constant A076390, or sqrt(2/Pi)*(2*gamma(3/4)^4 + Pi^2)/gamma(3/4)^2. - Jean-François Alcover, Apr 17 2013